999 resultados para Pyrazine-2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The title compound, [Cu(C5H3N2O2)(2)(H2O)(2)], is a new polymorph of the previously reported compound [Klein et al. (1982). Inorg. Chem. 21, 1891-1897]. The Cu-II atom, lying on an inversion center, is coordinated by two N atoms and two O atoms from two pyrazine-2-carboxylate ligands and by two water molecules in a distorted octahedral geometry with the water molecules occupying the axial sites. Intermolecular O-H center dot center dot center dot O, O-H center dot center dot center dot N and C-H center dot center dot center dot O hydrogen bonds connect the complex molecules into a two-dimensional layer parallel to (10 (1) over bar), whereas the previously reported polymorph exhibits a three-dimensional hydrogen-bonded network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two isomorphous new candidates [M(mu(4)-pz25dc)](n) (M = Cd, 1; Zn, 2; pz25dc = pyrazine-2,5-dicarboxylato)for nonlinear optical (NLO) materials have been synthesized hydrothermally and characterized crystallographically as pillared-layer three-nodal frameworks with one four-connected metal nodes and two crystallographically different four-connected ligand nodes. Their optical non-linearities are measured by the Z-Scan technique with an 8 ns pulsed laser at 532 nm. These two coordination polymers both exhibit strong NLO absorptive abilities [alpha(2) = (63 +/- 6) x 10 (12) mW (1) 1, ( 46 +/- 6) x 10 (11) mW (1) 2] and effective self-focusing performance [n(2) = (67 +/- 5) x 10 (18) 1, (13 +/- 3) x 10 (18) m(2) W (1) 2] in 1.02 x 10 (4) 1 and 1.05 x 10 (4) mol dm (3) 2 DMF solution separately. The values of the limiting threshold are also measured from the optical limiting experimental data. The heavy atom effect plays important role in the enhancement of optical non-linearities and optical limiting properties. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dipolar fluorescent compounds containing electron-accepting pyrazine-2,3-dicarbonitrile and electron-donating arylamine moiety have been designed and synthesized. The optical and electrochemical properties of these compounds can be adjusted by changing pi-bridge length and the donor (D) strength. Organic light-emitting devices based on these compounds are fabricated. Saturated red emission of (0.67, 0.33) and the external quantum efficiency as high as 1.41% have been demonstrated for one of these compounds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work involved the synthesis, characterization and proposing the molecular structure of coordination compounds involving ligands pyrazine-2-carboxamide (PZA) and 4- hydrazide acidic pyridine carboxylic (INH) and metals of the first transition series (M = Co2+, Ni2+ and Cu2+). For the characterization of the compounds used were analytical techniques such as infrared absorption spectroscopy average (FT-IR) molar conductivity measurements, CHN elemental analysis, EDTA Complexometric, measurement of melting point, X-ray diffraction by powder method, Thermogravimetry (TG) and Differential Thermal Analysis (DTA) and Simultaneous Differential Scanning Calorimetry (DSC). The absorption spectra in the infrared region suggested that the ligand coordination to the metal center occurs through the carbonyl oxygen atom and nitrogen alpha pyrazine ring to those complexes formed with PZA. For INH complexes with metal-ligand coordination is through the carbonyl oxygen and nitrogen of the terminal hydrazide grouping. The conductivity measurements of the complexes in aqueous solution they suggest to all behavior of the type 1:2 electrolytes, and conduct of non-electrolytes in acetonitrile. The results obtained by CHN elemental analysis and EDTA Complexometric allowed to infer the stoichiometry of the compounds synthesized. For all of the complexes obtained was possible to record the melting points, neither of which melted near the melting temperature of the free ligands. The X-ray diffraction showed that the complexes of pyrazinamide exhibited diffraction lines, suggesting that these compounds are crystalline, while compounds of isoniazid, with the exception of cobalt, exhibited diffraction lines, indicating that they are crystalline. The results from the TG-DTA and DSC allowed information regarding the dehydration and thermal decomposition of these complexes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structures of the 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the monocyclic heteroaromatic carboxylic acids, isonicotinic acid, picolinic acid, dipicolinic acid and pyrazine-2,3-dicarboxylic acid have been determined at 200 K and their hydrogen-bonding patterns examined. The compounds are respectively anhydrous 4-carbamoylpiperidinium pyridine-4-carboxylate (1), the partial hydrate 4-carbamoylpiperidinium pyridine-2-carboxylate 0.25 water (2), the solvate 4-carbamoylpiperidinium 6-carboxypyridine-2-carboxylate methanol monosolvate (3), and anhydrous 4-carbamoylpiperidinium 3-carboxypyrazine-2-carboxylate (4). In compounds 1 and 3, hydrogen-bonding interactions give two-dimensional sheet structures which feature enlarged cyclic ring systems, while in compounds 2 and 4, three-dimensional structures are found. The previously described cyclic R2/2(8) hydrogen-bonded amide-amide dimer is present in 2 and 3. The hydrogen-bonding in 2 involves the partial-occupancy water molecule while the structure of 4 is based on inter-linked homomolecular hydrogen-bonded cation-cation and anion-anion associated chains comprising head-to-tail interactions. This work further demonstrates the utility of the isonipecotamide cation in the generation of chemically stable hydrogen-bonded systems, particularly with aromatic carboxylate anions, providing crystalline solids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structures and magnetic properties of five new transition metal-azido complexes with two anionic [pyrazine-2-carboxylate (pyzc) and p-aminobenzoate (paba)] and two neutral [pyrazine (pyz) and pyridine (py)] coligands are reported All five complexes were synthesized bysolvothermal methods The complex [Co-2(pyzc)(2)(N-3)(2)(H2O)(2)](n) (1) is 1D and exhibit canted antiferromagnetism, while the 3D complex [MnNa(pyzc)(N-3)(2)(H2O)(2)](n) (2) has a complicated structure and is weakly ferromagnetic in nature [Mn-2(paba)(2)(N-3)(2)(H2O)(2)](n) (3). is a 2D sheet and the Mn-II ions are found to be antiferromagnetically coupled The isostructural 2D complexes [Cu-3(pyz)(2)(N-3)(6)](n) (4) and [Cu-3(py)(2)(N-3)(6)](n) (5) resemble remarkably in their magnetic properties exhibiting moderately strong ferromagnetism. Density functional theory calculations (B3LYP functional) have been performed to provide a qualitative theoretical interpietation of the overall magnetic behavior shown by these complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aminolevulinic acid (ALA) stability within topical formulations intended for photodynamic therapy (PDT) is poor due to dimerisation to pyrazine-2,5-dipropionic acid (PY). Most strategies to improve stability use low pH vehicles, which can cause cutaneous irritancy. To overcome this problem, a novel approach is investigated that uses a non-aqueous vehicle to retard proton-induced charge separation across the 4-carbonyl group on ALA and lessen nucleophilic attack that leads to condensation dimerisation. Bioadhesive anhydrous vehicles based on methylvinylether-maleic anhydride copolymer patches and poly(ethyleneglycol) or glycerol thickened poly(acrylic acid) gels were formulated. ALA stability fell below pharmaceutically acceptable levels after 6 months, with bioadhesive patches stored at 5°C demonstrating the best stability by maintaining 86.2% of their original loading. Glycerol-based gels maintained 40.2% in similar conditions. However, ALA loss did not correspond to expected increases in PY, indicating the presence of another degradative process that prevented dimerisation. Nuclear magnetic resonance (NMR) analysis was inconclusive in respect of the mechanism observed in the patch system, but showed clearly that an esterification reaction involving ALA and both glycerol and poly(ethyleneglycol) was occurring. This was especially marked in the glycerol gels, where only 2.21% of the total expected PY was detected after 204 days at 5°C. Non-specific esterase hydrolysis demonstrated that ALA was recoverable from the gel systems, further supporting esterified binding within the gel matrices. It is conceivable that skin esterases could duplicate this finding upon topical application of the gel and convert these derivatives back to ALA in situ, provided skin penetration is not affected adversely.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of five crown ethers, 15-crown-5, 18-crown-6, benzo-15-crown-5, dibenzo-l8-crown-6, and dibenzo-24-crown-8 with 2, 3, 5, 6 - tetracyano pyrazine has been studied by spectroscopic methods. The association constants and thermodynamic parameters of the 1:1 complexes formed by donor ethers with the acceptor have been evaluated. There is an indication that oxygens of the ethers and aryl part of the ether act cooperatively in binding of the acceptor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Results from previous electrochemical studies have indicated that 2,2'-bipyridine and pyrazine do not function as promoters for heterogeneous electron transfer between cytochrome c and metal electrodes. Their lack of activity was attributed to the improper positioning of the two functional groups in 2,2'-bipyridine and the inefficient length of pyrazine. In the present study it was determined that both 2,2'-bipyridine and pyrazine act as promoters when self-absorbed over a sufficiently long dipping time or at roughened electrodes. The promoter characteristics of these two molecules were studied and compared with those of 4,4'-bipyridine. The difference in their promoter behavior appears to result primarily from their different strengths of adsorption and not because electrodes modified with 2,2'-bipyridine or pyrazine are unsuitable for accelerating direct electron transfer reactions in cytochrome c. These results have implications regarding the mechanism(s) of promoter effects in electrochemical reactions of cytochrome c.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Colourless single crystals of [Hg-2(Pym)](NO3)(2), [Hg-2(Pym)](ClO4)(2) and [Hg-2(Pyp)(2)](ClO4)(2) were obtained from aqueous solutions of the respective components Hg-2(NO3)(2).2H(2)O, Hg-2(ClO4)(2).6H(2)O, pyrimidine (Pym) and pyrazine (Pyp). The crystal structures were determined from single-crystal X-ray diffractometer data. [Hg-2(Pym)](NO3)(2): monoclinic, C2/c, Z = 8, a = 1607.4(2), b = 652.79(7), c = 2000.5(2) pm, beta = 103.42(2)degrees, R-all = 0.0530; [Hg-2(Pym)](ClO4)(2): orthorhombic, Pnma, Z = 4, a = 1182.7(2), b = 1662.5(2), c = 607.9(1) pm, R-all = 0.0438; [Hg-2(Pyp)(2)](ClO4)(2): orthorhombic, Aba2, Z = 4, a = 1529.39(9), b = 1047.10(14), c = 1133.49(15) pm, R-all = 0.0381. The crystal structures of [Hg-2(Pym)](NO3)(2) and [Hg-2(Pym)](ClO4)(2) contain polymeric cationic chains [Hg-2(Pym)](+) that are arranged to corrugated layers between which the anions are situated. [Hg-2(Pyp)(2)](ClO4)(2) consists of polymeric cationic layers that are built from (Hg-2)(2)(Hg-2)(2/2)(Pyp)(4) rings connected to each other; the perchlorate tetrahedra are located between these layers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In [Hg2I4(Pyp)] (Pyp = pyrazine, C4H4N2), centrosymmetric molecules consist of two HgI2 units connected by a pyrazine molecule.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In [HgCl2(Pyp)](n) (Pyp = pyrazine, C4H4N2), chloride-bridged HgCl4/2 strands are connected into layers by pyrazine molecules. The Hg atom is on a site of symmetry 2/m, the unique Cl atom is on a mirror plane, the unique N atom is on a twofold rotation axis, and the unique C and H atoms are in general positions.