979 resultados para Purinoceptors, P1, P2X, P2Y
Resumo:
The discovery of non-adrenergic, non-cholinergic neurotransmission in the gut and bladder in the early 1960's is described as well as the identification of adenosine 5'-triphosphate (ATP) as a transmitter in these nerves in the early 1970's. The concept of purinergic cotransmission was formulated in 1976 and it is now recognized that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. Two families of receptors to purines were recognized in 1978, P1 (adenosine) receptors and P2 receptors sensitive to ATP and adenosine diphosphate (ADP). Cloning of these receptors in the early 1990's was a turning point in the acceptance of the purinergic signalling hypothesis and there are currently 4 subtypes of P1 receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of G protein-coupled receptors. Both short-term purinergic signalling in neurotransmission, neuromodulation and neurosecretion and long-term (trophic) purinergic signalling of cell proliferation, differentiation, motility, death in development and regeneration are recognized. There is now much known about the mechanisms underlying ATP release and extracellular breakdown by ecto-nucleotidases. The recent emphasis on purinergic neuropathology is discussed, including changes in purinergic cotransmission in development and ageing and in bladder diseases and hypertension. The involvement of neuron-glial cell interactions in various diseases of the central nervous system, including neuropathic pain, trauma and ischemia, neurodegenerative diseases, neuropsychiatric disorders and epilepsy are also considered.
Resumo:
Uridine adenosine tetraphosphate (Up(4)A) has been recently identified as a novel and potent endothelium-derived contracting factor and contains both purine and pyrimidine moieties, which activate purinergic P2X and P2Y receptors. The present study was designed to compare contractile responses to Up(4)A and other nucleotides such as ATP (P2X/P2Y agonist), UTP (P2Y(2)/P2Y(4) agonist), UDP (P2Y(6) agonist), and alpha,beta-methylene ATP (P2X(1) agonist) in different vascular regions [thoracic aorta, basilar, small mesenteric, and femoral arteries] from deoxycorticosterone acetate-salt (DOCA-salt) and control rats. In DOCA-salt rats [vs. control uninephrectomized (Uni) rats]: (1) in thoracic aorta, Up(4)A-, ATP-, and UP-induced contractions were unchanged; (2) in basilar artery, Up(4)A-, ATP-, UTP- and UDP-induced contractions were increased, and expression for P2X(1), but not P2Y(2) or P2Y(6) was decreased; (3) in small mesenteric artery, Up(4)A-induced contraction was decreased and UDP-induced contraction was increased; expression of P2Y(2) and P2X(1) was decreased whereas P2Y(6) expression was increased; (4) in femoral artery, Up(4)A-. UTP-, and UDP-induced contractions were increased, but expression of P2Y(2), P2Y(6) and P2X(1) was unchanged. The alpha,beta-methylene ATP-induced contraction was bell-shaped and the maximal contraction was reached at a lower concentration in basilar and mesenteric arteries from Uni rats, compared to arteries from DOCA-salt rats. These results suggest that Up(4)A-induced contraction is heterogenously affected among various vascular beds in arterial hypertension. P2Y receptor activation may contribute to enhancement of Up(4)A-induced contraction in basilar and femoral arteries. These changes in vascular reactivity to Up(4)A may be adaptive to the vascular alterations produced by hypertension. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
P2X purinoceptors have been suggested to participate in transduction of painful stimuli in nociceptive neurons. In the current experiments, ATP (1-10 mM), alpha,beta-methylene-ATP (10-30 mu M) and capsaicin (10 nM-1 mu M) were applied to neurons impaled with high resistance microelectrodes in rat dorsal root ganglia (L4 and L5) isolated in vitro together with the sciatic nerve and dorsal roots. The agonists were either bath applied or focally applied using a picospritzer. GABA (100 mu M) and 40-80 mM K+ solutions gave brisk responses when applied by either technique. Only three of 22 neurons with slowly conducting axons (C cells) showed evidence of P2X-purinoceptor-mediated responses. Only two of 13 cells which responded to capsaicin (putative nociceptors), and none of 29 cells with rapidly conducting axons (A cells), responded to the purinergic agonists. When acutely dissociated dorsal root ganglion cells were studied using patch-clamp techniques, all but four of 30 cells of all sizes responded with an inward current to either ATP or alpha,beta-methylene-ATP (both 100 mu M). Our data suggest that few sensory cell bodies in intact dorsal root ganglia express functional purinoceptors. (C) 1998 IBRO. Published by Elsevier Science Ltd.
Resumo:
ATP acts on cellular membranes by interacting with P2X (ionotropic) and P2Y (metabotropic) receptors. Seven homomeric P2X receptors (P2X(1)-P2X(7)) and seven heteromeric receptors (P2X(1/2), P2X(1/4), P2X(1/5), P2X(2/3), P2X(2/6), P2X(4/6), P2X(4/7)) have been described. ATP treatment of Leydig cells leads to an increase in [Ca(2+)](i) and testosterone secretion, supporting the hypothesis that Ca(2+) signaling through purinergic receptors contributes to the process of testosterone secretion in these cells. Mouse Leydig cells have P2X receptors with a pharmacological and biophysical profile resembling P2X(2). In this work, we describe the presence of several P2X receptor subunits in mouse Leydig cells. Western blot experiments showed the presence of P2X(2), P2X(4), P2X(6), and P2X(7) subunits. These results were confirmed by immunofluorescence. Functional results support the hypothesis that heteromeric receptors are present in these cells since 0.5 mu M ivermectin induced an increase (131.2 +/- 5.9%) and 3 mu M ivermectin a decrease (64.2 +/- 4.8%) in the whole-cell currents evoked by ATP. These results indicate the presence of functional P2X(4) subunits. P2X(7) receptors were also present, but they were non-functional under the present conditions because dye uptake experiments with Lucifer yellow and ethidium bromide were negative. We conclude that a heteromeric channel, possibly P2X(2/4/6), is present in Leydig cells, but with an electrophysiological and pharmacological phenotype characteristic of the P2X(2) subunit.
Resumo:
In the present study we evaluated the role of purinergic mechanisms in the PVN on the tonic modulation of the autonomic function to the cardiovascular system as well on the cardiovascular responses to peripheral chemoreflex activation in awake rats Guide-cannulae were bilaterally Implanted in the direction of the PVN of male Wistar rats Femoral artery and vein were catheterized one day before the experiments Chemoreflex was activated with KCN (30 mu g/0 05 ml iv) before and after microinjections of P2 receptors antagonist into the PVN Microinjection of PPADS a non selective P2X antagonist Into the PVN (n = 6) produced a significant increase in the baseline MAP (99 +/- 2 vs 112 +/- 3 mmHg) and HR (332 +/- 8 vs 375 +/- 8 bpm) but had no effect on the pressor and bradycardic responses to chemoreflex activation Intravenous injection of vasopres in receptors antagonist after microinjection of PPADS into the PVN produced no effect on the increased baseline MAP Simultaneous microinjection of PPADS and KYN into the PVN (n=6) had no effect in the baseline MAP HR or in the pressor and bradycardic responses to chemoreflex activation We conclude that P2 purinoceptors in the PVN are involved in the modulation of baseline autonomic function to the cardiovascular system but not in the cardiovascular responses to chemoreflex activation in awake rats (C) 2010 Elsevier B V All rights reserved
Resumo:
P2X(1)-type purinoceptors, have been shown to mediate fast transmission between sympathetic varicosities and smooth muscle cells in the mouse vas deferens but the spatial organization of these receptors on the smooth muscle cells remains inconclusive. Voltage clamp techniques were used to estimate the amplitudes of spontaneous excitatory junction currents (SEJCs) in cells of the vas deferens longitudinal smooth muscle layer. These currents involved the activation of about 6% of the P2X-type channels present on the cell, as compared to whole cell currents produced when isolated smooth muscle cells were exposed to maximal concentrations of either ATP or alpha,beta -MeATP. Immunofluorescence staining of the vas deferens with antibodies against P2X(1) receptor showed a diffuse, grainy distribution over the entire membrane of each smooth muscle cell. Anti-P2X(1) staining was not markedly clustered beneath anti-SV2-stained sympathetic varicosities. Similar results were obtained for cells in the urinary bladder. During development, P2X(1) mRNA was detected as early as embryonic day 15 (E15). Increasing intensities of diffuse immunostaining for P2X(1) were observed in the walls of the bladder, tail artery, and aorta from E15 until 6 weeks postnatal. The vas deferens showed increasing intensities of diffuse staining of its smooth muscle layers between 2 and 6 weeks postnatal, consistent with the time-course of development of fast purinergic transmission described previously. Together, the results suggest that the response of smooth muscle of the vas deferens to ATP released from sympathetic varicosities relies on rapidly desensitizing P2X(1) receptors, distributed diffusely across the smooth muscle cell surface. Synapse 42:1-11, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
Abstract Background We have previously reported that a Teiid lizard red blood cells (RBCs) such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Results Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER) pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. Conclusion T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs), for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracelullar medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.
Resumo:
Adenosine and its endogenous precursor ATP are main components of the purinergic system that modulates cellular and tissue functions via specific adenosine and ATP receptors (P1 and P2 receptors), respectively. Although adenosine inhibits excitability and ATP functions as an excitatory transmitter in the central nervous system, little is known about the ability of P1 and P2 receptors to form new functional structures such as a heteromer to control the complex purinergic cascade. Here we have shown that Gi/o protein-coupled A1 adenosine receptor (A1R) and Gq protein-coupled P2Y1 receptor (P2Y1R) coimmunoprecipitate in cotransfected HEK293T cells, suggesting the oligomeric association between distinct G protein-coupled P1 and P2 receptors. A1R and P2Y2 receptor, but not A1R and dopamine D2 receptor, also were found to coimmunoprecipitate in cotransfected cells. A1R agonist and antagonist binding to cell membranes were reduced by coexpression of A1R and P2Y1R, whereas a potent P2Y1R agonist adenosine 5′-O-(2-thiotriphosphate) (ADPβS) revealed a significant potency to A1R binding only in the cotransfected cell membranes. Moreover, the A1R/P2Y1R coexpressed cells showed an ADPβS-dependent reduction of forskolin-evoked cAMP accumulation that was sensitive to pertussis toxin and A1R antagonist, indicating that ADPβS binds A1R and inhibits adenylyl cyclase activity via Gi/o proteins. Also, a high degree of A1R and P2Y1R colocalization was demonstrated in cotransfected cells by double immunofluorescence experiments with confocal laser microscopy. These results suggest that oligomeric association of A1R with P2Y1R generates A1R with P2Y1R-like agonistic pharmacology and provides a molecular mechanism for an increased diversity of purine signaling.
Resumo:
El glaucoma es una neuropatía óptica crónica de etiología multifactorial, que provoca una pérdida progresiva e irreversible de la visión debida a la degeneración de los axones del nervio óptico y la muerte apoptótica de las células ganglionares de la retina (Downs et al., 2011; Quigley, 2011; Soto et al., 2014). Actualmente es la principal causa de ceguera irreversible en el mundo (Pascolini et al., 2012). Aunque su etiología aún no está clara, se sabe que el principal factor de riesgo para desarrollar la enfermedad es el aumento de la PIO debido a anomalías en la dinámica del humor acuoso (Casson et al., 2012). La presencia de receptores purinérgicos P2X y P2Y ha sido descrita en las principales estructuras oculares relacionadas con la producción y drenaje del humor acuoso, los procesos ciliares y la malla trabecular, que son bañadas por dicho fluido (Guzman-‐Aranguez et al., 2013). Al mismo tiempo, se ha referido la presencia del dinucleótido Ap4A, agonista de dichos receptores, en el humor acuoso, y cómo sus niveles se veían significativamente incrementados en pacientes glaucomatosos (Castany et al., 2011). El objetivo de esta tesis ha sido evaluar la implicación de los receptores purinérgicos P2Y2 de los procesos ciliares en la hipertensión ocular. Más concretamente determinar el papel del Ap4A a través de la activación de dichos receptores sobre la movilización del ion cloruro y del agua a través de las proteínas acuaporinas (AQPs), principales componentes del humor acuoso. Por otra parte, se ha investigado el origen de los niveles incrementados de Ap4A debidos al aumento de la PIO, caracterizando uno de los posibles sensores celulares implicados en dicho proceso. Al mismo tiempo se han evaluado y caracterizado los diferentes mecanismos implicados en dicha liberación...
Resumo:
AIM: To investigate the effects of malnutrition and refeeding on the P2X(2) receptor, nitric oxide synthase (NOS), calretinin, calbindin and choline acetyltransferase (ChAT) in neurons of the rat ileum. METHODS: We analyzed the co-localization, numbers and sizes of P2X(2)-expressing neurons in relation to NOS-IR (immunoreactive), calbindin-IR, ChAT-IR, and calretinin-IR neurons of the myenteric and submucosal plexus. The experimental groups consisted of: (1) rats maintained on normal feed throughout pregnancy until 42 d post-parturition (N); (2) rats deprived of protein throughout pregnancy and 42 d post-parturition (D); and (3) rats undernourished for 21 d post-parturition and then given a protein diet from days 22 to 42 (DR). The myenteric and submucosal plexuses were evaluated by double labeling by immunohistochemical methods for P2X(2) receptor, NOS, ChAT, calbindin and calretinin. RESULTS: We found similar P2X(2) receptor immunoreactivity in the cytoplasm and surface membranes of myenteric and submucosal neurons from the N, D and DR groups. Double labeling of the myenteric plexus demonstrated that approximately 100% of NOS-IR, calbindin-IR, calretinin-IR and ChAT-IR neurons in all groups also expressed the P2X(2) receptor. In the submucosal plexus, the calretinin-IR, ChAT-IR and calbindinIR neurons were nearly all immunoreactive for the P2X(2) receptor. In the myenteric plexus, there was a 19% increase in numbers per cm(2) for P2X(2) receptor-IR neurons, 64% for NOS-IR, 84% for calretinin-IR and 26% for ChAT-IR neurons in the D group. The spatial density of calbindin-IR neurons, however, did not differ among the three groups. The submucosal neuronal density increased for calbindin-IR, calretinin-IR and ChAT-IR neurons. The average size of neurons in the myenteric plexus neurons in the D group was less than that in the controls and, in the re-fed rats; there was a 34% reduction in size only for the calretinin-IR neurons. CONCLUSION: This work demonstrates that expression of the P2X(2) receptor is present in inhibitory, intrinsic primary afferent, cholinergic secretomotor and vasomotor neurons. Undernutrition affected P2X(2) receptor expression in the submucosal plexus, and neuronal and size. These changes were rescued in the re-fed rats. (C) 2010 Baishideng. All rights reserved.
Resumo:
Lipopolysaccharide (LPS) stimulates cytoplasmic accumulation of pro-interleukin (IL)-1 beta. Activation of P2X(7) receptors stimulates conversion of pro-IL-1 beta into mature IL-1 beta, which is then secreted. Because both LPS (in vivo) and IL-1 beta (in vitro) decrease vascular reactivity to contractile agents, we hypothesized the following: 1) P2X(7) receptor activation contributes to LPS-induced vascular hyporeactivity, and 2) IL-1 beta mediates this change. Thoracic aortas were obtained from 12-week-old male C57BL/6 mice. The aortic rings were incubated for 24 h in Dulbecco`s modified Eagle`s medium, LPS, benzoylbenzoyl-ATP (BzATP; P2X(7) receptor agonist), LPS plus BzATP, oxidized ATP (oATP; P2X(7) receptor antagonist), or oATP plus LPS plus BzATP. After the treatment, the rings were either mounted in a myograph for evaluation of contractile activity or homogenized for IL-1 beta and inducible nitric-oxide synthase (iNOS) protein measurement. In endothelium-intact aortic rings, phenylephrine (PE)-induced contractions were not altered by incubation with LPS or BzATP, but they significantly decreased in aortic rings incubated with LPS plus BzATP. Treatment with oATP or IL-1ra (IL-1 beta receptor antagonist) reversed LPS plus BzATP-induced hyporeactivity to PE. In the presence of N(G)-nitro-L-arginine methyl ester or N-([3-(aminomethyl) phenyl] methyl) ethanimidamide (selective iNOS inhibitor), the vascular hyporeactivity induced by LPS plus BzATP on PE responses was not observed. BzATP augmented LPS-induced IL-1 beta release and iNOS protein expression, and these effects were also inhibited by oATP. Moreover, incubation of endothelium-intact aortic rings with IL-1 beta induced iNOS protein expression. Thus, activation of P2X 7 receptor amplifies LPS-induced hyporeactivity in mouse endothelium-intact aorta, which is associated with IL-1 beta-mediated release of nitric oxide by iNOS.
Resumo:
Matsumoto T, Tostes RC, Webb RC. Uridine adenosine tetraphosphate-induced contraction is increased in renal but not pulmonary arteries from DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 301: H409-H417, 2011. First published May 6, 2011; doi:10.1152/ajpheart.00084.2011.-Uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived contracting factor. Up(4)A contains both purine and pyrimidine moieties, which activate purinergic (P2)X and P2Y receptors. However, alterations in the vasoconstrictor responses to Up(4)A in hypertensive states remain unclear. The present study examined the effects of Up(4)A on contraction of isolated renal arteries (RA) and pulmonary arteries (PA) from DOCA-salt rats using isometric tension recording. RA from DOCA-salt rats exhibited increased contraction to Up(4)A versus arteries from control uninephrectomized rats in the absence and presence of N(G)-nitro-L-arginine (nitric oxide synthase inhibitor). On the other hand, the Up(4)A-induced contraction in PA was similar between the two groups. Up(4)A-induced contraction was inhibited by suramin (nonselective P2 antagonist) but not by diinosine pentaphosphate pentasodium salt hydrate (Ip5I; P2X(1) antagonist) in RA from both groups. Furthermore, 2-thiouridine 5`-triphosphate tetrasodium salt (2-Thio-UTP; P2Y(2) agonist)-, uridine-5`-(gamma-thio)-triphosphate trisodium salt (UTP gamma S; P2Y(2)/P2Y(4) agonist)-, and 5-iodouridine-5`-O-diphosphate trisodium salt (MRS 2693; P2Y(6) agonist)-induced contractions were all increased in RA from DOCA-salt rats. Protein expression of P2Y(2)-, P2Y(4)-, and P2Y(6) receptors in RA was similar between the two groups. In DOCA-salt RA, the enhanced Up(4)A-induced contraction was reduced by PD98059, an ERK pathway inhibitor, and Up(4)Astimulated ERK activation was increased. These data are the first to indicate that Up(4)A-induced contraction is enhanced in RA from DOCA-salt rats. Enhanced P2Y receptor signaling and activation of the ERK pathway together represent a likely mechanism mediating the enhanced Up(4)A-induced contraction. Up(4)A might be of relevance in the pathophysiology of vascular tone regulation and renal dysfunction in arterial hypertension.
Resumo:
The pre- and postsynaptic actions of exogenously applied ATP were investigated in intact and dissociated parasympathetic neurotics of rat submandibular ganglia. Nerve-evoked excitatory postsynaptic potentials (EPSPs) were not inhibited by the purinergic receptor antagonists, suramin and pyridoxal-phosphate-6-azophenyl-2 ' ,4 ' -disulphonic acid (PPADS), or the desensitising agonist, alpha,beta -methylene ATP. In contrast. EPSPs were abolished by the nicotinic acetylcholine receptor antagonists, hexamethonium and mecamylamine. Focal application of ATP (100 muM) had no effect on membrane potential of the postsynaptic neurone or on the amplitude of spontaneous EPSPs. Taken together, these results suggest the absence of functional purinergic (P2) receptors on the postganglionic neurone in situ. In contrast, focally applied ATP (100 muM) reversibly inhibited nerve-evoked EPSPs. Similarly, bath application of the non-hydrolysable analogue of ATP, ATP gammaS, reversibly depressed EPSPs amplitude, The inhibitory effects of ATP and ATP gammaS on nerve-evoked transmitter release were antagonised by bath application of either PPADS or suramin, suggesting ATP activates a presynaptic P2 purinoceptor to inhibit acetylcholine release from preganglionic nerves in the submandibular ganglia. In acutely dissociated postganglionic neurotics from rat submandibular ganglia. focal application of ATP (100 LM) evoked an inward current and subsequent excitatory response and action potential firing, which was reversibly inhibited by PPADS (10 muM). The expression of P2X purinoceptors in wholemount and dissociated submandibular ganglion neurones was examined using polyclonal antibodies raised against the extracellular domain of six P2X purinoceptor subtypes (P2X(1-6)). In intact wholemount preparations, only the P2X(5) purinoceptor subtype was found to be expressed in the submandibular ganglion neurones and no P2X immunoreactivity was detected in the nerve fibres innervating the ganglion. Surprisingly, in dissociated submandibular ganglion neurones, high levels of P2X(2) and P2X(4) purinoceptors immunoreactivity were found on the cell surface. This increase in expression of P2X(2) and P2X(4) purinoceptors in dissociated submandibular neurones could explain the increased responsiveness of the neurotics to exogenous ATP. We conclude that disruption of ganglionic transmission in vivo by either nerve damage or synaptic blockade may up-regulate P2X expression or availability and alter neuronal excitability. (C) 2001 IBRO. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
1. The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. 2. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (P-X/P-Cs) ranging from 1. 11 to 0.86. 3. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. 4, The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. 5. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X(2) and/or anti-P2X(4) but not anti-P2X(1) antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X(2) and P2X(4) receptor subtypes expressed in rat submandibular neurones. 6. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells.