868 resultados para Purinergic stimulation
Resumo:
Both stimulation of purinergic receptors by ATP and activation of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibit amiloride-sensitive Na+ transport and activate Cl-secretion. These changes in ion transport may well affect cell volume. We therefore examined whether cell shrinkage or cell swelling do affect amiloride-sensitive Na+ transport in epithelial tissues or Xenopus oocytes and whether osmotic stress interferes with regulation of Na+ transport by ATP or CFTR. Stimulation of purinergic receptors by ATP/UTP or activation of CFTR by IBMX and forskolin inhibited amiloride-sensitive transport in mouse trachea and colon, respectively, by a mechanism that was Cl- dependent. When exposed to a hypertonic but not hypotonic bath solution, amiloride-sensitive Na+ transport was inhibited in mouse trachea and colon, independent of the extracellular Cl- concentration. Both inhibition of Na+ transport by hypertonic bath solution and ATP were additive. When coexpressed in Xenopus oocytes, activation of CFTR by IBMX and forskolin inhibited the epithelial Na+ channel (ENaC) in a Cl(-)dependent fashion. However, both hypertonic and hypotonic bath solutions showed only minor effects on amiloride-sensitive conductance, independent of the bath Cl- concentration. Moreover, CFTR-induced inhibition of ENaC could be detected in chocytes even after exposure to hypertonic or bypotonic bath solutions. We conclude that amiloride-sensitive Na+ absorption in mouse airways and colon is inhibited by cell shrinkage by a mechanism that does not interfere with purinergic and CFTR-mediated inhibition of ENaC.
Resumo:
La Fibrose Kystique (FK) est une maladie dégénérative qui entraine une dégénération des poumons dû au problème de clairance mucociliaire (CMC). Le volume de surface liquide (SL) couvrant les cellules pulmonaires est essentiel à la clairance de mucus et au combat contre les infections. Les nucléotides extracellulaires jouent un rôle important dans la CMC des voies aériennes, en modifiant le volume de la SL pulmonaire. Cependant, les mécanismes du relâchement de l’ATP et de leurs déplacements à travers la SL, restent inconnus. Des études ultérieures démontrent que l’exocytose d’ATP mécano-sensible et Ca2+-dépendant, dans les cellules A549, est amplifié par les actions synergétiques autocrine/paracrine des cellules avoisinantes. Nous avions comme but de confirmer la présence de la boucle purinergique dans plusieurs modèles de cellules épithéliales et de développer un système nous permettant d’observer directement la SL. Nous avons démontrés que la boucle purinergique est fonctionnelle dans les modèles de cellules épithéliales examinés, mis appart les cellules Calu-3. L’utilisation de modulateur de la signalisation purinergique nous a permis d’observer que le relâchement d’ATP ainsi que l’augmentation du [Ca2+]i suivant un stress hypotonique, sont modulés par le biais de cette boucle purinergique et des récepteurs P2Y. De plus, nous avons développé un système de microscopie qui permet d’observer les changements de volume de SL en temps réel. Notre système permet de contrôler la température et l’humidité de l’environnement où se trouvent les cellules, reproduisant l’environnement pulmonaire humain. Nous avons démontré que notre système peut identifier même les petits changements de volume de SL.
Efeito da estimulação purinérgica sobre a produção de melatonina em macrófagos da linhagem RAW 264.7
Resumo:
A melatonina é um hormônio produzido de forma rítmica e no período de escuro pela glândula pineal bem como de forma não rítmica por diversos tecidos e células imunocompetentes. É sintetizada pela acetilação e metilação da serotonina pela ação das enzimas arilalquilamina N-acetiltransferase (AA-NAT) e acetilserotonina -O-metiltransferase (ASMT) que levam à formação de N-acetilserotonina (NAS) e melatonina (MEL), respectivamente. Nos últimos anos temos demonstrado que síntese de melatonina pela pineal pode ser negativamente modulada por mediadores inflamatórios e pelo ATP que atua como co-transmissor juntamente com a noradrenalina liberada no terminal nervoso simpático que a inerva. Perifericamente, contudo, estes mediadores inflamatórios apresentam um efeito contrário induzindo a produção de melatonina em células imunocompetentes. Estas observações levaram à criação da hipótese de um eixo imune-pineal. Esse trabalho teve como objetivo verificar o efeito do ATP sobre produção de melatonina em macrófagos da linhagem RAW 264.7 Os dados desse trabalho mostram que o ATP é capaz de induzir de maneira dose dependente a produção de melatonina em macrófagos através da modulação das enzimas AA-NAT e ASMT. Foi demostrado também que esse efeito é mediado pelo receptor P2X7 e que a melatonina produzida age autocrina e paracrinamente aumentando a fagocitose de particulas de zimosan. Com isso, podemos concluir que o ATP é um ativador endógeno do eixo imune-pineal
Resumo:
BACKGROUND/AIMS ATP-gated P2X4 purinergic receptors (P2X4Rs) are cation channels with important roles in diverse cell types. To date, lack of specific inhibitors has hampered investigations on P2X4Rs. Recently, the benzodiazepine derivative, 5-BDBD has been proposed to selectively inhibit P2X4Rs. However, limited evidences are currently available on its inhibitory properties. Thus, we aimed to characterize the inhibitory effects of 5-BDBD on recombinant human P2X4Rs. METHODS We investigated ATP-induced intracellular Ca(2+) signals and whole cell ion currents in HEK 293 cells that were either transiently or stably transfected with hP2X4Rs. RESULTS Our data show that ATP (< 1 μM) stimulates P2X4R-mediated Ca(2+) influx while endogenously expressed P2Y receptors are not activated to any significant extent. Both 5-BDBD and TNP-ATP inhibit ATP-induced Ca(2+) signals and inward ion currents in a concentration-dependent manner. Application of two different concentrations of 5-BDBD causes a rightward shift in ATP dose-response curve. Since the magnitude of maximal stimulation does not change, these data suggest that 5-BDBD may competitively inhibit the P2X4Rs. CONCLUSIONS Our results demonstrate that application of submicromolar ATP concentrations allows reliable assessment of recombinant P2XR functions in HEK 293 cells. Furthermore, 5-BDBD and TNP-ATP have similar inhibitory potencies on the P2X4Rs although their mechanisms of actions are different.
Resumo:
Bone morphogenetic proteins (BMPs) have been widely investigated for their clinical use in bone repair and it is known that a suitable carrier matrix to deliver them is essential for optimal bone regeneration within a specific defect site. Fused deposited modeling (FDM) allows for the fabrication of medical grade poly 3-caprolactone/tricalcium phosphate (mPCL–TCP) scaffolds with high reproducibility and tailor designed dimensions. Here we loaded FDM fabricated mPCL–TCP/collagen scaffolds with 5 mg recombinant human (rh)BMP-2 and evaluated bone healing within a rat calvarial critical-sized defect. Using a comprehensive approach, this study assessed the newly regenerated bone employing microcomputed tomography (mCT), histology/histomorphometry, and mechanical assessments. By 15 weeks, mPCL–TCP/collagen/rhBMP-2 defects exhibited complete healing of the calvarium whereas the non- BMP-2-loaded scaffolds showed significant less bone ingrowth, as confirmed by mCT. Histomorphometry revealed significantly increased bone healing amongst the rhBMP-2 groups compared to non-treated scaffolds at 4 and 15 weeks, although the % BV/TV did not indicate complete mineralisation of the entire defect site. Hence, our study confirms that it is important to combine microCt and histomorphometry to be able to study bone regeneration comprehensively in 3D. A significant up-regulation of the osteogenic proteins, type I collagen and osteocalcin, was evident at both time points in rhBMP-2 groups. Although mineral apposition rates at 15 weeks were statistically equivalent amongst treatment groups, microcompression and push-out strengths indicated superior bone quality at 15 weeks for defects treated with mPCL–TCP/collagen/rhBMP-2. Consistently over all modalities, the progression of healing was from empty defect < mPCL–TCP/collagen < mPCL–TCP/collagen/rhBMP-2, providing substantiating data to support the hypothesis that the release of rhBMP-2 from FDM-created mPCL–TCP/collagen scaffolds is a clinically relevant approach to repair and regenerate critically-sized craniofacial bone defects. Crown Copyright 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
It is known that adenosine 5'-triphosphate (ATP) is a cotransmitter in the heart. Additionally, ATP is released from ischemic and hypoxic myocytes. Therefore, cardiac-derived sources of ATP have the potential to modify cardiac function. ATP activates P2X(1-7) and P2Y(1-14) receptors; however, the presence of P2X and P2Y receptor subtypes in strategic cardiac locations such as the sinoatrial node has not been determined. An understanding of P2X and P2Y receptor localization would facilitate investigation of purine receptor function in the heart. Therefore, we used quantitative PCR and in situ hybridization to measure the expression of mRNA of all known purine receptors in rat left ventricle, right atrium and sinoatrial node (SAN), and human right atrium and SAN. Expression of mRNA for all the cloned P2 receptors was observed in the ventricles, atria, and SAN of the rat. However, their abundance varied in different regions of the heart. P2X(5) was the most abundant of the P2X receptors in all three regions of the rat heart. In rat left ventricle, P2Y(1), P2Y(2), and P2Y(14) mRNA levels were highest for P2Y receptors, while in right atrium and SAN, P2Y(2) and P2Y(14) levels were highest, respectively. We extended these studies to investigate P2X(4) receptor mRNA in heart from rats with coronary artery ligation-induced heart failure. P2X(4) receptor mRNA was upregulated by 93% in SAN (P < 0.05), while a trend towards an increase was also observed in the right atrium and left ventricle (not significant). Thus, P2X(4)-mediated effects might be modulated in heart failure. mRNA for P2X(4-7) and P2Y(1,2,4,6,12-14), but not P2X(2,3) and P2Y(11), was detected in human right atrium and SAN. In addition, mRNA for P2X(1) was detected in human SAN but not human right atrium. In human right atrium and SAN, P2X(4) and P2X(7) mRNA was the highest for P2X receptors. P2Y(1) and P2Y(2) mRNA were the most abundant for P2Y receptors in the right atrium, while P2Y(1), P2Y(2), and P2Y(14) were the most abundant P2Y receptor subtypes in human SAN. This study shows a widespread distribution of P2 receptor mRNA in rat heart tissues but a more restricted presence and distribution of P2 receptor mRNA in human atrium and SAN. This study provides further direction for the elucidation of P2 receptor modulation of heart rate and contractility.
Resumo:
The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23–39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2–3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0Æ05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0Æ05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0Æ05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.
Resumo:
Objective: To assess the efficacy of bilateral pedunculopontine nucleus (PPN) deep brain stimulation (DBS) as a treatment for primary progressive freezing of gait (PPFG). ------ ----- Methods: A patient with PPFG underwent bilateral PPN-DBS and was followed clinically for over 14 months. ------ ----- Results: The PPFG patient exhibited a robust improvement in gait and posture following PPN-DBS. When PPN stimulation was deactivated, postural stability and gait skills declined to pre-DBS levels, and fluoro-2-deoxy-d-glucose positron emission tomography revealed hypoactive cerebellar and brainstem regions, which significantly normalised when PPN stimulation was reactivated. ------ ----- Conclusions: This case demonstrates that the advantages of PPN-DBS may not be limited to addressing freezing of gait (FOG) in idiopathic Parkinson's disease. The PPN may also be an effective DBS target to address other forms of central gait failure.
Resumo:
To analyse mechanotransduction resulting from tensile loading under defined conditions, various devices for in vitro cell stimulation have been developed. This work aimed to determine the strain distribution on the membrane of a commercially available device and its consistency with rising cycle numbers, as well as the amount of strain transferred to adherent cells. The strains and their behaviour within the stimulation device were determined using digital image correlation (DIC). The strain transferred to cells was measured on eGFP-transfected bone marrow-derived cells imaged with a fluorescence microscope. The analysis was performed by determining the coordinates of prominent positions on the cells, calculating vectors between the coordinates and their length changes with increasing applied tensile strain. The stimulation device was found to apply homogeneous (mean of standard deviations approx. 2% of mean strain) and reproducible strains in the central well area. However, on average, only half of the applied strain was transferred to the bone marrow-derived cells. Furthermore, the strain measured within the device increased significantly with an increasing number of cycles while the membrane's Young's modulus decreased, indicating permanent changes in the material during extended use. Thus, strain magnitudes do not match the system readout and results require careful interpretation, especially at high cycle numbers.