933 resultados para Pure spinor formalism
Resumo:
Using a new proposal for the ""picture lowering"" operators, we compute the tree level scattering amplitude in the minimal pure spinor formalism by performing the integration over the pure spinor space as a multidimensional Cauchy-type integral. The amplitude will be written in terms of the projective pure spinor variables, which turns out to be useful to relate rigorously the minimal and non-minimal versions of the pure spinor formalism. The natural language for relating these formalisms is the. Cech-Dolbeault isomorphism. Moreover, the Dolbeault cocycle corresponding to the tree-level scattering amplitude must be evaluated in SO(10)/SU(5) instead of the whole pure spinor space, which means that the origin is removed from this space. Also, the. Cech-Dolbeault language plays a key role for proving the invariance of the scattering amplitude under BRST, Lorentz and supersymmetry transformations, as well as the decoupling of unphysical states. We also relate the Green`s function for the massless scalar field in ten dimensions to the tree-level scattering amplitude and comment about the scattering amplitude at higher orders. In contrast with the traditional picture lowering operators, with our new proposal the tree level scattering amplitude is independent of the constant spinors introduced to define them and the BRST exact terms decouple without integrating over these constant spinors.
Resumo:
It has recently been shown that the ten-dimensional superstring can be quantized using the BRST operator Q = philambda(alpha)d(alpha), where lambda(alpha) is a pure spinor satisfying; lambdagamma(m)lambda = 0 and dalpha is the fermionic supersymmetric derivative. In this paper, the pure spinor version of superstring theory is formulated in a curved supergravity background and it is shown that nilpotency and holomorphicity of the pure spinor BRST operator imply the on-shell superspace constraints of the supergravity background. This is shown to lowest order in alpha' for the heterotic and Type II superstrings, thus providing a compact pure spinor version of the ten-dimensional superspace constraints for N = 1 Type IIA and Type IIB supergravities. Since quantization is straightforward using the pure spinor version of the superstring, it is expected that these methods can also be used to compute higher-order alpha' corrections to the ten-dimensional superspace constraints. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted (c) over cap = 3 N = 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincare covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
After adding a pair of non-minimal fields and performing a similarity transformation, the BRST operator in the pure spinor formalism is expressed as a conventional-looking BRST operator involving the Virasoro constraint and (b, c) ghosts, together with 12 fermionic constraints. This BRST operator can be obtained by gauge-fixing the Green-Schwarz superstring where the 8 first-class and 8 second-class Green-Schwarz constraints are combined into 12 first-class constraints. Alternatively, the pure spinor BRST operator can be obtained from the RNS formalism by twisting the ten spin-half RNS fermions into five spin-one and five spin-zero fermions, and using the SO(10)/U(5) pure spinor variables to parameterize the different ways of twisting. GSO(-) vertex operators in the pure spinor formalism are constructed using spin fields and picture-changing operators in a manner analogous to Ramond vertex operators in the RNS formalism.
Resumo:
Using the non-minimal version of the pure spinor formalism, manifestly super-Poincare covariant superstring scattering amplitudes can be computed as in topological string theory without the need of picture-changing operators. The only subtlety comes from regularizing the functional integral over the pure spinor ghosts. In this paper, it is shown how to regularize this functional integral in a BRST-invariant manner, allowing the computation of arbitrary multiloop amplitudes. The regularization method simplifies for scattering amplitudes which contribute to ten-dimensional F-terms, i.e. terms in the ten-dimensional superspace action which do not involve integration over the maximum number of theta's.
Resumo:
We use the non-minimal pure spinor formalism to compute in a super-Poincare covariant manner the four-point massless one and two-loop open superstring amplitudes, and the gauge anomaly of the six-point one-loop amplitude. All of these amplitudes are expressed as integrals of ten-dimensional superfields in a pure spinor superspace which involves five theta coordinates covariantly contracted with three pure spinors. The bosonic contribution to these amplitudes agrees with the standard results, and we demonstrate identities which show how the t(8) and epsilon(10) tensors naturally emerge from integrals over pure spinor superspace.
Resumo:
A manifestly super-Poincaré covariant formalism for the superstring has recently been constructed using a pure spinor variable. Unlike the covariant Green-Schwarz formalism, this new formalism is easily quantized with a BRST operator and tree-level scattering amplitudes have been evaluated in a manifestly covariant manner. In this paper, the cohomology of the BRST operator in the pure spinor formalism is shown to give the usual light-cone Green-Schwarz spectrum. Although the BRST operator does not directly involve the Virasoro constraint, this constraint emerges after expressing the pure spinor variable in terms of SO(8) variables.
Resumo:
Classical BRST invariance in the pure spinor formalism for the open superstring is shown to imply the supersymmetric Born-Infeld equations of motion for the background fields. These equations are obtained by requiring that the left and right-moving BRST currents are equal on the worldsheet boundary in the presence of the background. The Born-Infeld equations are expressed in N = 1 D = 10 superspace and include all abelian contributions to the low-energy equations of motion, as well as the leading non-abelian contributions. © SISSA/ISAS 2003.
Resumo:
A ten-dimensional super-Poincaré covariant formalism for the superstring was recently developed which involves a BRST operator constructed from superspace matter variables and a pure spinor ghost variable. A super-Poincaré covariant prescription was defined for computing tree amplitudes and was shown to coincide with the standard RNS prescription. In this paper, picture-changing operators are used to define functional integration over the pure spinor ghosts and and to construct a suitable b ghost. A super-Poincaré covariant prescription is then given for the computation of N-point multiloop amplitudes. One can easily prove that massless N-point multiloop amplitudes vanish for N < 4, confirming the perturbative finiteness of superstring theory. One can also prove the Type IIB S-duality conjecture that R4 terms in the effective action receive no perturbative contributions above one loop. © SISSA/ISAS 2004.
Resumo:
Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted ĉ ≤ 3 N ≤ 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincaré covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action. © SISSA 2005.
Resumo:
The massless 4-point one-loop amplitude computation in the pure spinor formalism is shown to agree with the computation in the RNS formalism. © SISSA 2006.