982 resultados para Pulse oximetry
Resumo:
Introduction: The aim of this study was to evaluate pulp oxygenation levels (%SpO(2)) in patients with malignant intraoral and oropharyngeal tumors treated by radiotherapy (RT). Methods: Pulp oxygenation levels were measured by pulse oximetry. Twenty patients were selected, and two teeth of each participant (n = 40) were analyzed, regardless of the quadrant and the area irradiated, at four different time points: TP1, before RI; TP2, at the beginning of RI with radiation doses between 30 and 35 Gy; TP3, at the end of RI with radiation dose! between 60 and 70 Gy; and TP4, 4 to 5 months after the beginning of cancer treatment. Results: Mean %SpO(2) at the different time points were 93% (TP1), 83% (TP2), 77% (TP3), and 85% (TP4). The Student`s t test showed statistically significant differences between TP1 and TP2 (P < .01), TP3 (P <.01), and TP4 (P <.01). TP3 was also statistically significantly different when compared with TP2 (P <.01) and TP4 (P <.01). No statistically significant difference could be observed between TP2 and TP4. Conclusion`s: Because the mean %SpO(2) before RI was greater than during and after therapy and values obtained 4 to 5 months after the beginning of RI were close to the initiation of RI, pulp tissue may be able to regain normal blood flow after RT. If the changes in the microcirculation of the dental pulp were indeed transitory, preventive endodontic treatment or extraction in patients who are currently undergoing or recently received RI and who show negative signs of pulp sensitivity may rot be necessary for pulpal reasons. (J Endod 2011;37:1197-1200)
Resumo:
Aim To evaluate the use of pulse oximetry as a test for pulp vitality, by comparing in the same patient, the levels of oxygen saturation of the index finger and of the maxillary central incisor and canine teeth without clinically detectable pulp inflammation. Methodology Seventeen male and female patients aged between 26 and 38 years participated and a total of 32 maxillary central incisor and 32 canine teeth were analysed. Selection criteria required the teeth to have healthy crowns, or with restorations no more than 2 mm in diameter and no clinical and radiographical signs or symptoms of pulp or periapical inflammatory changes. The negative control group consisted of 10 root filled teeth. Measurements were first taken from the index finger of patients. Their teeth were then subjected to a thermal test with refrigerant gas and then to a vitality test with pulse oximetry. Data were analysed by Pearson`s and paired t-tests. Results There were no significant statistical correlations between blood oxygen levels in the index finger and in the teeth of the patient (P > 0.05). There was a statistically significant difference in the oxygen levels between the two tooth groups studied and the index finger (P <= 0.002). Mean oxygen values in the index finger of patients were 95% (SD = 1.6), oxygen values in the maxillary central incisor were 91.29% (SD = 2.61) and mean oxygen values in maxillary canine were 90.69% (SD = 2.71). Conclusion The method determined consistently the level of blood oxygen saturation of the pulp in maxillary central incisor and canine teeth and can therefore be used for pulp vitality testing. Further studies are required to assess the effectiveness and validity of pulse oximetry in determining pulp vitality in traumatized teeth.
Resumo:
This article examines the current status of fetal pulse oximetry (FPO) as a means of intrapartum assessment of fetal wellbeing. FPO has been developed to a stage where it is a safe and accurate indicator of intrapartum fetal oxygenation. In general, sliding the FPO sensor along the examiner's fingers and through the cervix, to lie alongside the fetal cheek or temple is easy The recent publication of a randomised controlled trial (RCT) of FPO versus conventional intrapartum monitoring has validated its use to reduce caesarean section rates for nonreassuring fetal status. An Australian multicentre RCT is currently underway. Maternal satisfaction rates with FPO are high. FPO may be used during labour when the electronic fetal heart rate trace is nonreassuring or when conventional monitoring is unreliable, such as with fetal arrhythmias. If the fetal oxygen saturation (FSpO(2)) values are < 30%, prompt obstetric intervention is indicated, such as fetal scalp blood sampling or delivery FSpO(2) monitoring should not form the sole basis of intrapartum fetal welfare assessment. Rather, the whole clinical picture should be considered.
Resumo:
OBJECTIVE: To test the accuracy of a new pulse oximeter sensor based on transmittance and reflectance. This sensor makes transillumination of tissue unnecessary and allows measurements on the hand, forearm, foot, and lower limb. DESIGN: Prospective, open, nonrandomized criterion standard study. SETTING: Neonatal intensive care unit, tertiary care center. PATIENTS: Sequential sample of 54 critically ill neonates (gestational age 27 to 42 wks; postnatal age 1 to 28 days) with arterial catheters in place. MEASUREMENTS AND MAIN RESULTS: A total of 99 comparisons between pulse oximetry and arterial saturation were obtained. Comparison of femoral or umbilical arterial blood with transcutaneous measurements on the lower limb (n = 66) demonstrated an excellent correlation (r2 = .96). The mean difference was +1.44% +/- 3.51 (SD) % (range -11% to +8%). Comparison of the transcutaneous values with the radial artery saturation from the corresponding upper limb (n = 33) revealed a correlation coefficient of 0.94 with a mean error of +0.66% +/- 3.34% (range -6% to +7%). The mean difference between noninvasive and invasive measurements was least with the test sensor on the hand, intermediate on the calf and arm, and greatest on the foot. The mean error and its standard deviation were slightly larger for arterial saturation values < 90% than for values > or = 90%. CONCLUSION: Accurate pulse oximetry saturation can be acquired from the hand, forearm, foot, and calf of critically ill newborns using this new sensor.
Resumo:
We evaluated a new pulse oximeter designed to monitor beat-to-beat arterial oxygen saturation (SaO2) and compared the monitored SaO2 with arterial samples measured by co-oximetry. In 40 critically ill children (112 data sets) with a mean age of 3.9 years (range 1 day to 19 years), SaO2 ranged from 57% to 100%, and PaO2 from 27 to 128 mm Hg, heart rates from 85 to 210 beats per minute, hematocrit from 20% to 67%, and fetal hemoglobin levels from 1.3% to 60%; peripheral temperatures varied between 26.5 degrees and 36.5 degrees C. Linear correlation analysis revealed a good agreement between simultaneous pulse oximeter values and both directly measured SaO2 (r = 0.95) and that calculated from measured arterial PaO2 (r = 0.95). The device detected several otherwise unrecognized drops in SaO2 but failed to function in four patients with poor peripheral perfusion secondary to low cardiac output. Simultaneous measurements with a tcPO2 electrode showed a similarly good correlation with PaO22 (r = 0.91), but the differences between the two measurements were much wider (mean 7.1 +/- 10.3 mm Hg, range -14 to +49 mm Hg) than the differences between pulse oximeter SaO2 and measured SaO2 (1.5% +/- 3.5%, range -7.5% to -9%) and were not predictable. We conclude that pulse oximetry is a reliable and accurate noninvasive device for measuring saturation, which because of its rapid response time may be an important advance in monitoring changes in oxygenation and guiding oxygen therapy.
Resumo:
Pulse oximetry has been proposed as a noninvasive continuous method for transcutaneous monitoring of arterial oxygen saturation of hemoglobin (tcSO2) in the newborn infant. The reliability of this technique in detecting hyperoxemia is controversial, because small changes in saturation greater than 90% are associated with relatively large changes in arterial oxygen tension (PaO2). The purpose of this study was to assess the reliability of pulse oximetry using an alarm limit of 95% tcSO2 in detecting hyperoxemia (defined as PaO2 greater than 90 mm Hg) and to examine the effect of varying the alarm limit on reliability. Two types of pulse oximeter were studied alternately in 50 newborn infants who were mechanically ventilated with indwelling arterial lines. Three arterial blood samples were drawn from every infant during routine increase of inspired oxygen before intratracheal suction, and PaO2 was compared with tcSO2. The Nellcor N-100 pulse oximeter identified all 26 hyperoxemic instances correctly (sensitivity 100%) and alarmed falsely in 25 of 49 nonhyperoxemic instances (specificity 49%). The Ohmeda Biox 3700 pulse oximeter detected 13 of 35 hyperoxemic instances (sensitivity 37%) and alarmed falsely in 7 of 40 nonhyperoxemic instances (specificity 83%). The optimal alarm limit, defined as a sensitivity of 95% or more associated with maximal specificity, was determined for Nellcor N-100 at 96% tcSO2 (specificity 38%) and for Ohmeda Biox 3700 at 89% tcSO2 (specificity 52%). It was concluded that pulse oximeters can be highly sensitive in detecting hyperoxemia provided that type-specific alarm limits are set and a low specificity is accepted.
Resumo:
IMPLICATIONS: A new combined ear sensor was tested for accuracy in 20 critically ill children. It provides noninvasive and continuous monitoring of arterial oxygen saturation, arterial carbon dioxide tension, and pulse rate. The sensor proved to be clinically accurate in the tested range.
Resumo:
This is a participant study, quasi-experimental, of a before and after type. A quantitative approach of biophysiological measures was used, represented by the saturation of oxygen measured by pulse oximeter (SpO2), and recorded on three occasions: before, during and after the bedbath in critically ill patients hospitalized at the ICU of a University Hospital in Brazil. Objective: to compare the SpO2 in various stages of the bath, with and without control of water temperature. Data collection was performed between December 2007 and April 2008 on a convenience sample consisting of 30 patients aged over 18 who had classification in TISS-28 from level II. Results show that water temperature control means a lower variation of SpO2 (p<0.05). No marked differences in variation of saturation between men and women or between age groups were established. In conclusion, heated and constant water temperature during the bedbath is able to minimize the fall of SpO2 that occurs while handling patients during procedures.
Resumo:
Pulse oximetry represents a major advance in patient monitoring, but measurement below 70 to 80% saturation has important limitations. Several authors have tested pulse oximetry at low saturations with conflicting results. A review of these data indicates that every patient with a pulse oximeter value below 75 to 80% SaO2 should have one or more invasive measurements of the arterial SaO2 in order to avoid undetected severe hypoxemia.
Resumo:
We tested the performance of transcutaneous oxygen monitoring (TcPO2) and pulse oximetry (tcSaO2) in detecting hypoxia in critically ill neonatal and pediatric patients. In 54 patients (178 data sets) with a mean age of 2.4 years (range 1 to 19 years), arterial saturation (SaO2) ranged from 9.5 to 100%, and arterial oxygen tension (PaO2) from 16.4 to 128 mmHg. Linear correlation analysis of pulse oximetry vs measured SaO2 revealed an r value of 0.95 (p less than 0.001) with an equation of y = 21.1 + 0.749x, while PaO2 vs tcPO2 showed a correlation coefficient of r = 0.95 (p less than 0.001) with an equation of y = -1.04 + 0.876x. The mean difference between measured SaO2 and tcSaO2 was -2.74 +/- 7.69% (range +14 to - 29%) and the mean difference between PaO2 and tcPO2 was +7.43 +/- 8.57 mmHg (range -14 to +49 mmHg). Pulse oximetry was reliable at values above 65%, but was inaccurate and overestimated the arterial SaO2 at lower values. TcPO2 tended to underestimate the arterial value with increasing PaO2. Pulse oximetry had the best sensitivity to specificity ratio for hypoxia between 65 and 90% SaO2; for tcPO2 the best results were obtained between 35 and 55 mmHg PaO2.