805 resultados para Pulsars: individual (SGR 0418 5729)
Resumo:
SGR 0418+5729 is a transient soft gamma-ray repeater which underwent a major outburst in 2009 June, during which the emission of short bursts was observed. Its properties appeared quite typical of other sources of the same class until long-term X-ray monitoring failed to detect any period derivative. The present upper limit on P implies that the surface dipole field is Bp lsim 7.5 × 1012 G, well below those measured in other soft gamma-ray repeaters (SGRs) and in the Anomalous X-ray Pulsars (AXPs), a group of similar sources. Both SGRs and AXPs are currently believed to be powered by ultra-magnetized neutron stars (magnetars, Bp ≈ 1014-1015 G). SGR 0418+5729 hardly seems to fit in such a picture. We show that the magneto-rotational properties of SGR 0418+5729 can be reproduced if this is an aged magnetar, ≈1 Myr old, which experienced substantial field decay. The large initial toroidal component of the internal field required to match the observed properties of SGR 0418+5729 ensures that crustal fractures, and hence bursting activity, can still occur at the present time. The thermal spectrum observed during the outburst decay is compatible with the predictions of a resonant Compton scattering model (as in other SGRs/AXPs) if the field is low and the magnetospheric twist is moderate.
Resumo:
We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6×1012G estimated from its spin-down rate, is in the observed range of magnetic fields for normal pulsars. The source is further characterized by a high pulse fraction and a single-peak profile. Using synthetic temperature distribution profiles, and fully accounting for the general-relativistic effects of light deflection and gravitational redshift, we generate synthetic X-ray spectra and pulse profiles that we fit to the observations. We find that asymmetric and symmetric surface temperature distributions can reproduce equally well the observed pulse profiles and spectra of SGR 0418. None the less, the modelling allows us to place constraints on the system geometry (i.e. the angles ψ and ξ that the rotation axis makes with the line of sight and the dipolar axis, respectively), as well as on the spot size and temperature contrast on the neutron star surface. After performing an analysis iterating between the pulse profile and spectra, as done in similar previous works, we further employed, for the first time in this context, a Markov-Chain Monte Carlo approach to extract constraints on the model parameters from the pulse profiles and spectra, simultaneously. We find that, to reproduce the observed spectrum and flux modulation: (a) the angles must be restricted to 65° ≲ ψ + ξ ≲ 125° or 235° ≲ ψ + ξ ≲ 295°; (b) the temperature contrast between the poles and the equator must be at least a factor of ∼6, and (c) the size of the hottest region ranges between 0.2 and 0.7 km (including uncertainties on the source distance). Lastly, we interpret our findings within the context of internal and external heating models.
Resumo:
We report on the long-term X-ray monitoring of the outburst decay of the low magnetic field magnetar SGR 0418+5729 using all the available X-ray data obtained with RXTE, Swift, Chandra, and XMM-Newton observations from the discovery of the source in 2009 June up to 2012 August. The timing analysis allowed us to obtain the first measurement of the period derivative of SGR 0418+5729: ˙ P = 4(1) × 10−15 s s−1, significant at a ∼3.5σ confidence level. This leads to a surface dipolar magnetic field of Bdip 6 × 1012 G. This measurement confirms SGR 0418+5729 as the lowest magnetic field magnetar. Following the flux and spectral evolution from the beginning of the outburst up to ∼1200 days, we observe a gradual cooling of the tiny hot spot responsible for the X-ray emission, from a temperature of ∼0.9 to 0.3 keV. Simultaneously, the X-ray flux decreased by about three orders of magnitude: from about 1.4 × 10−11 to 1.2 × 10−14 erg s−1 cm−2. Deep radio, millimeter, optical, and gamma-ray observations did not detect the source counterpart, implying stringent limits on its multi-band emission, as well as constraints on the presence of a fossil disk. By modeling the magneto-thermal secular evolution of SGR 0418+5729, we infer a realistic age of ∼550 kyr, and a dipolar magnetic field at birth of ∼1014 G. The outburst characteristics suggest the presence of a thin twisted bundle with a small heated spot at its base. The bundle untwisted in the first few months following the outburst, while the hot spot decreases in temperature and size. We estimate the outburst rate of low magnetic field magnetars to be about one per year per galaxy, and we briefly discuss the consequences of such a result in several other astrophysical contexts.
Resumo:
We report on the long-term X-ray monitoring with Swift, RXTE, Suzaku, Chandra, and XMM-Newton of the outburst of the newly discovered magnetar Swift J1822.3–1606 (SGR 1822–1606), from the first observations soon after the detection of the short X-ray bursts which led to its discovery, through the first stages of its outburst decay (covering the time span from 2011 July until the end of 2012 April). We also report on archival ROSAT observations which detected the source during its likely quiescent state, and on upper limits on Swift J1822.3–1606's radio-pulsed and optical emission during outburst, with the Green Bank Telescope and the Gran Telescopio Canarias, respectively. Our X-ray timing analysis finds the source rotating with a period of P = 8.43772016(2) s and a period derivative P = 8.3(2)×10−14 s s−1, which implies an inferred dipolar surface magnetic field of B sime 2.7 × 1013 G at the equator. This measurement makes Swift J1822.3–1606 the second lowest magnetic field magnetar (after SGR 0418+5729). Following the flux and spectral evolution from the beginning of the outburst, we find that the flux decreased by about an order of magnitude, with a subtle softening of the spectrum, both typical of the outburst decay of magnetars. By modeling the secular thermal evolution of Swift J1822.3–1606, we find that the observed timing properties of the source, as well as its quiescent X-ray luminosity, can be reproduced if it was born with a poloidal and crustal toroidal fields of Bp ~ 1.5 × 1014 G and B tor ~ 7 × 1014 G, respectively, and if its current age is ~550 kyr.
Resumo:
We study the outburst of the newly discovered X-ray transient 3XMMJ185246.6+003317, re-analyzing all available XMM-Newton observations of the source to perform a phase-coherent timing analysis, and derive updated values of the period and period derivative. We find the source rotating at P = 11.55871346(6) s (90% confidence level; at epoch MJD 54728.7) but no evidence for a period derivative in the seven months of outburst decay spanned by the observations. This translates to a 3σ upper limit for the period derivative of ˙ P <1.4×10−13 s s−1, which, assuming the classical magneto-dipolar braking model, gives a limit on the dipolar magnetic field of Bdip < 4.1×1013 G. The X-ray outburst and spectral characteristics of 3XMM J185246.6+003317 confirm its identification as a magnetar, but the magnetic field upper limit we derive defines it as the third “low-B” magnetar discovered in the past 3 yr, after SGR 0418+5729 and Swift J1822.3−1606. We have also obtained an upper limit to the quiescent luminosity (<4×1033 erg s−1), in line with the expectations for an old magnetar. The discovery of this new low field magnetar reaffirms the prediction of about one outburst per year from the hidden population of aged magnetars.
Resumo:
We report on the quiescent state of the soft gamma repeater SGR 0501+4516 observed by XMM–Newton on 2009 August 30. The source exhibits an absorbed flux ∼75 times lower than that measured at the peak of the 2008 outburst, and a rather soft spectrum, with the same value of the blackbody temperature observed with ROSAT back in 1992. This new observation is put into the context of all existing X-ray data since its discovery in 2008 August, allowing us to complete the study of the timing and spectral evolution of the source from outburst until its quiescent state. The set of deep XMM–Newton observations performed during the few years time-scale of its outburst allows us to monitor the spectral characteristics of this magnetar as a function of its rotational period, and their evolution along these years. After the first ∼10 d, the initially hot and bright surface spot progressively cooled down during the decay. We discuss the behaviour of this magnetar in the context of its simulated secular evolution, inferring a plausible dipolar field at birth of 3 × 1014 G, and a current (magnetothermal) age of ∼10 kyr.
Resumo:
The existence of millisecond pulsars with planet-mass companions in close orbits is challenging from the stellar evolution point of view. We calculate in detail the evolution of binary systems self-consistently, including mass transfer, evaporation, and irradiation of the donor by X-ray feedback, demonstrating the existence of a new evolutionary path leading to short periods and compact donors as required by the observations of PSR J1719-1438. We also point out the alternative of an exotic nature of the companion planet-mass star.
Resumo:
In 2013 April a new magnetar, SGR 1745−2900, was discovered as it entered an outburst, at only 2.4 arcsec angular distance from the supermassive black hole at the centre of the Milky Way, Sagittarius A*. SGR 1745−2900 has a surface dipolar magnetic field of ∼2 × 1014 G, and it is the neutron star closest to a black hole ever observed. The new source was detected both in the radio and X-ray bands, with a peak X-ray luminosity LX ∼ 5 × 1035 erg s−1. Here we report on the long-term Chandra (25 observations) and XMM–Newton (eight observations) X-ray monitoring campaign of SGR 1745−2900 from the onset of the outburst in 2013 April until 2014 September. This unprecedented data set allows us to refine the timing properties of the source, as well as to study the outburst spectral evolution as a function of time and rotational phase. Our timing analysis confirms the increase in the spin period derivative by a factor of ∼2 around 2013 June, and reveals that a further increase occurred between 2013 October 30 and 2014 February 21. We find that the period derivative changed from 6.6 × 10−12 to 3.3 × 10−11 s s−1 in 1.5 yr. On the other hand, this magnetar shows a slow flux decay compared to other magnetars and a rather inefficient surface cooling. In particular, starquake-induced crustal cooling models alone have difficulty in explaining the high luminosity of the source for the first ∼200 d of its outburst, and additional heating of the star surface from currents flowing in a twisted magnetic bundle is probably playing an important role in the outburst evolution.
Resumo:
We report on the discovery of a new member of the magnetar class, SGR J1935+2154, and on its timing and spectral properties measured by an extensive observational campaign carried out between 2014 July and 2015 March with Chandra and XMM–Newton (11 pointings). We discovered the spin period of SGR J1935+2154 through the detection of coherent pulsations at a period of about 3.24 s. The magnetar is slowing down at a rate of P˙=1.43(1)×10−11 s s−1 and with a decreasing trend due to a negative P¨ of −3.5(7) × 10−19 s s−2. This implies a surface dipolar magnetic field strength of ∼2.2 × 1014 G, a characteristic age of about 3.6 kyr and a spin-down luminosity Lsd ∼1.7 × 1034 erg s−1. The source spectrum is well modelled by a blackbody with temperature of about 500 eV plus a power-law component with photon index of about 2. The source showed a moderate long-term variability, with a flux decay of about 25 per cent during the first four months since its discovery, and a re-brightening of the same amount during the second four months. The X-ray data were also used to study the source environment. In particular, we discovered a diffuse emission extending on spatial scales from about 1 arcsec up to at least 1 arcmin around SGR J1935+2154 both in Chandra and XMM–Newton data. This component is constant in flux (at least within uncertainties) and its spectrum is well modelled by a power-law spectrum steeper than that of the pulsar. Though a scattering halo origin seems to be more probable we cannot exclude that part, or all, of the diffuse emission is due to a pulsar wind nebula.
Resumo:
This paper discusses a rigorous treatment of the refractive scintillation of pulsar PSR B0833-45 caused by a two-component interstellar scattering medium. It is assumed that the interstellar scattering medium is composed of a thin screen ISM and an extended interstellar medium. We consider that the scattering of the thin screen concentrates in a thin layer presented by a delta function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with that of the Vela pulsar observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation of the Vela pulsar than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight. The logarithmic slope of the structure function is sensitive to thin screen location and is relatively insensitive to the scattering strength of the thin screen medium. Therefore, the proposed model can be applied to interpret the structure function of flux density observed in pulsar PSR B0833-45. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the Vela supernova remnant. Thus our work provides some insight into the distribution of the scattering along the line of sight to the Vela pulsar.
Resumo:
We raise the possibility that the very dense, compact companion of PSR J1719-1438, which has a Jupiter-like mass, is an exotic quark object rather than a light helium or carbon white dwarf. The exotic hypothesis naturally explains some of the observed features, and provides quite strong predictions for this system, to be confirmed or refuted in feasible future studies.
Resumo:
The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A∗. Young, massive stars within 0.5 pc of Sgr A∗ are evidence of an episode of intense star formation near the black hole a few million years ago, which might have left behind a young neutron star traveling deep into Sgr A∗’s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. With a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4±0.3 arcsec from Sgr A∗, and refine the source spin period and its derivative (P = 3.7635537(2) s and ˙ P = 6.61(4) × 10−12 s s−1), confirmed by quasi simultaneous radio observations performed with the Green Bank Telescope and Parkes Radio Telescope, which also constrain a dispersion measure of DM = 1750 ± 50 pc cm−3, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ≈0.07–2 pc from Sgr A∗. Simulations of its possible motion around Sgr A∗ show that it is likely (∼90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.
Resumo:
Only a few binary systems with compact objects display TeV emission. The physical properties of the companion stars represent basic input for understanding the physical mechanisms behind the particle acceleration, emission, and absorption processes in these so-called gamma-ray binaries. Here we present high-resolution and high signal-to-noise optical spectra of LS 2883, the Be star forming a gamma-ray binary with the young non-accreting pulsar PSR B1259-63, showing it to rotate faster and be significantly earlier and more luminous than previously thought. Analysis of the interstellar lines suggests that the system is located at the same distance as (and thus is likely a member of) Cen OB1. Taking the distance to the association, d = 2.3 kpc, and a color excess of E(B – V) = 0.85 for LS 2883 results in MV ≈ –4.4. Because of fast rotation, LS 2883 is oblate (R eq sime 9.7 R ☉ and R pole sime 8.1 R ☉) and presents a temperature gradient (T eq≈ 27,500 K, log g eq = 3.7; T pole≈ 34,000 K, log g pole = 4.1). If the star did not rotate, it would have parameters corresponding to a late O-type star. We estimate its luminosity at log(L */L ☉) sime 4.79 and its mass at M * ≈ 30 M ☉. The mass function then implies an inclination of the binary system i orb ≈ 23°, slightly smaller than previous estimates. We discuss the implications of these new astrophysical parameters of LS 2883 for the production of high-energy and very high-energy gamma rays in the PSR B1259-63/LS 2883 gamma-ray binary system. In particular, the stellar properties are very important for prediction of the line-like bulk Comptonization component from the unshocked ultrarelativistic pulsar wind.
Resumo:
A study of archival RXTE, Swift, and Suzaku pointed observations of the transient high-mass X-ray binary GRO J1008−57 is presented. A new orbital ephemeris based on pulse arrival-timing shows the times of maximum luminosities during outbursts of GRO J1008−57 to be close to periastron at orbital phase − 0.03. This makes the source one of a few for which outburst dates can be predicted with very high precision. Spectra of the source in 2005, 2007, and 2011 can be well described by a simple power law with high-energy cutoff and an additional black body at lower energies. The photon index of the power law and the black-body flux only depend on the 15–50 keV source flux. No apparent hysteresis effects are seen. These correlations allow us to predict the evolution of the pulsar’s X-ray spectral shape over all outbursts as a function of just one parameter, the source’s flux. If modified by an additional soft component, this prediction even holds during GRO J1008−57’s 2012 type II outburst.
Resumo:
We report on an outburst of the high mass X-ray binary 4U 0115+634 with a pulse period of 3.6 s in 2008 March/April as observed with RXTE and INTEGRAL. During the outburst the neutron star’s luminosity varied by a factor of 10 in the 3–50 keV band. In agreement with earlier work we find evidence of five cyclotron resonance scattering features at ~10.7, 21.8, 35.5, 46.7, and 59.7 keV. Previous work had found an anticorrelation between the fundamental cyclotron line energy and the X-ray flux. We show that this apparent anticorrelation is probably due to the unphysical interplay of parameters of the cyclotron line with the continuum models used previously, e.g., the negative and positive exponent power law (NPEX). For this model, we show that cyclotron line modeling erroneously leads to describing part of the exponential cutoff and the continuum variability, and not the cyclotron lines. When the X-ray continuum is modeled with a simple exponentially cutoff power law modified by a Gaussian emission feature around 10 keV, the correlation between the line energy and the flux vanishes, and the line parameters remain virtually constant over the outburst. We therefore conclude that the previously reported anticorrelation is an artifact of the assumptions adopted in the modeling of the continuum.