958 resultados para Pulpal tissues
Resumo:
Aim: The purpose of this in vivo study was to compare the effectiveness of a new light cured resin based dicalcium/tricalcium silicate pulp capping material (TheraCal LC, Bisco), pure Portland cement, resin based calcium hydroxide or glass ionomer in the healing of bacterially contaminated primate pulps. Study design: The experiment required four primates each having 12 teeth prepared with buccal penetrations into the pulpal tissues with an exposure of approximately 1.0 mm. The exposed pulps of the primate teeth were covered with cotton pellets soaked in a bacterial mixture consisting of microorganisms normally found in human pulpal abscesses. After removal of the pellet, hemostasis was obtained and the pulp capping agents applied. The light cured resin based pulp capping material (TheraCal LC) was applied to the pulpal tissue of twelve teeth with a needle tip syringe and light cured for 15 seconds. Pure Portland cement mixed with a 2% Chlorhexidine solution was placed on the exposed pulpal tissues of another twelve teeth. Twelve additional teeth had a base of GIC applied (Triage, Fuji VII GC America) and another twelve had a pulp cap with VLC DYCAL (Dentsply), a light cured calcium hydroxide resin based material. The pulp capping bases were then covered with a RMGI (Fuji II LC GC America). The tissue samples were collected at 4 weeks. The samples were deminerilized, sectioned, stained and histologically graded. Results: There were no statistically significant differences between the groups in regard to pulpal inflammation (H= 0.679, P=1.00). However, both the Portland cement and light cured TheraCal LC groups had significantly more frequent hard tissue bridge formation at 28 days than the GIC and VLC Dycal groups (H= 11.989, P=0.009). The measured thickness of the hard tissue bridges with the pure Portland and light cured TheraCal LC groups were statistically greater than that of the other two groups (H= 15.849, P=0.002). In addition, the occurrence of pulpal necrosis was greater with the GIC group than the others. Four premolars, one each treated according to the protocols were analyzed with a microCT machine. The premolar treated with the light cured TheraCal LC demonstrated a complete hard tissue bridge. The premolar treated with the GIC did not show a complete hard tissue bridge while the premolar treated with VLC Dycal had an incomplete bridge. The pure Portland with Chlorhexidine mixture created extensive hard tissue bridging.Conclusion: TheraCal LC applied to primate pulps created dentin bridges and mild inflammation acceptable for pulp capping.
Resumo:
The purpose of this study was to compare the effectiveness of antibacterial agents and mineral trioxide aggregate in the healing of bacterial contaminated primate pulps. Study Design: The experiment required four adult male primates (Cebus opella) with 48 teeth prepared with buccal penetrartions into the pulpal tissues. The preparations (Cebus opella) with 48 teeth prepared with buccal penetrations into the exposed to cotton pellets soaked in a bacterial mixture consisting of microorganisms normally found in human pulpal abscesses obtained from the Endodontic Clinic of UNESP. Following bacterial inoculation (30 minute exposure), the pulpal tissue was immediately treated with either sterile saline, Cipro HC Otic solution (12), diluted Buckley formecresol solution (12) or Otosporin otic solution (12) for 5 minutes. After removal of the pellet, hemostasis was obtained and a ZOE base applied to the DFC treated pulps and the non-treated controls (12). After hemostasis, the other exposed pulps were covered with mineral trioxide aggregate (ProRoot). The pulpal bases were all covered with a RMGI (Fuji II LC). The tissue samples were collected at one day, two days, one week and over four weeks (34 days). Results: Following perfusion fixation, the samples were demineralized, sectioned, stained and histologically graded. After histologic analysis, presence of neutrophilic infiltrate and areas of hemorrhage with hyperemia were observed . The depth of the neutrophilic infiltrate depended on the agent or material used. The pupal tissue treated with Otic suspensions demonstrated significantly less inflammation (Kruskal Wallis non parametric analysis, H=9.595 with 1 degree of freedom; P=0.0223) than the formocresol and control groups. The hard tissue bridges formed over the exposure sites were more organized in the MTA treatment groups than in the control and ZOE groups (Kruskal Wallis non parametric analysis, H=18.291 with 1 degree of freedom; P=0.0004). Conclusions: Otic suspensions and MTA are effective in treating bacterial infected pulps and stimulate the production of a hard tissue bridge over the site of the exposure.
Resumo:
To establish safety parameters, we in vitro studied the increase in intrapulpal temperature caused by the use of a cw CO2 laser. A thermistor was implanted in the inner part of the pulpal chamber of 25 human lower third molars to measure the intrapulpal temperature produced by laser powers between 2-10 W and exposure times of 0.5-25.0 s. The Pearson linear correlation factor applied to the measured values showed there is a direct relationship between the independent variable and the applied power. A variance analysis produced the linear regression equation: T=1.10+(0.127)E where T is the temperature and E the energy. The results showed that, with a power of 4 W and maximum exposure time of 2.5 s (10 J) and a power density of 12738.85 W cm-2, there will be no damaging reactions affecting the pulpal tissues.
Resumo:
Introduction: Transient receptor potential (TRP) channels are widely, but not uniformly, distributed in tissues. To date the dominant focus of attention has been on TRP expression and functionality in neurons. However, their expression and activation in selected non-neuronal cells suggest TRPs have a potential role in coordinating cross-talk during the inflammatory process. Fibroblasts comprise the major cell type in the dental pulp and play an important role in pulpal inflammation. Objectives: The aim of this study was to investigate the expression and functionality of the TRP channels TRPA1, TRPM8, TRPV4 and TRPV1 in human dental pulp fibroblasts. Methods: Dental pulp fibroblasts were derived by explant culture of pulps removed from extracted healthy teeth. Fibroblasts were cultured in DMEM supplemented with 10% FCS, 100U/ml penicillin and 100µg/ml streptomycin. Protein expression of TRP channels was investigated by SDS- polyacrylamide gel electrophoresis and Western blotting of cell lysates from fibroblast cells in culture. TRPA1, TRPM8, TRPV4 and TRPV1 expression was determined by specific antibodies, detected using appropriate anti-species antibodies and chemiluminescence. Functionality of TRP channels was determined by Ca2+ microfluorimetry. Cells were grown on cover slips and incubated with Fura 2AM prior to stimulation with icilin (TRPA1 agonist), menthol (TRPM8 agonist), 4 alpha-phorbol 12,13-didecanoate (4alphaPDD) (TRPV4 agonist) or capsaicin (TRPV1 agonist). Emitted fluorescence (F340/F380) was used to determine intracellular [Ca2+] levels. Results: Fibroblast expression of TRPA1, TRPM8, TRPV4 and TRPV1 was confirmed at the protein level by Western blotting. Increased intracellular [Ca2+] levels in response to icillin, methanol, 4alphaPDD and capsacin, indicated functional expression of TRPA1, TRPM8, TRPV4 and TRPV respectively. Conclusions: The presence and functionality of TRP channels on dental pulp fibroblasts suggests a potential role for these cells in the pulpal neurogenic inflammatory response. (Supported by a research grant from the Royal College of Surgeons of Edinburgh).
Resumo:
Pulpal and periodontal tissues of immature incisors of 10 dogs were radiographically and histopathologically evaluated immediately, 7, 15, 30 and 60 days after experimental intrusion induced by mechanical blows. Forty upper central and mesial lateral incisors showing incomplete root formation on radiographs were submitted to intrusive force. After the observation periods, the dogs were killed, two at a time. The hemi-maxilas were removed and processed for histopathologic examination. The traumatized teeth showed accelerated apical formation with reduced radicular length. Pulpal vitality was maintained and the subjacent tissues did not present irreversible changes. All traumatized teeth re-erupted spontaneously.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Diffusion is the process that leads to the mixing of substances as a result of spontaneous and random thermal motion of individual atoms and molecules. It was first detected by the English botanist Robert Brown in 1827, and the phenomenon became known as ‘Brownian motion’. More specifically, the motion observed by Brown was translational diffusion – thermal motion resulting in random variations of the position of a molecule. This type of motion was given a correct theoretical interpretation in 1905 by Albert Einstein, who derived the relationship between temperature, the viscosity of the medium, the size of the diffusing molecule, and its diffusion coefficient. It is translational diffusion that is indirectly observed in MR diffusion-tensor imaging (DTI). The relationship obtained by Einstein provides the physical basis for using translational diffusion to probe the microscopic environment surrounding the molecule.
Resumo:
Smart matrices are required in bone tissueengineered grafts that provide an optimal environment for cells and retain osteo-inductive factors for sustained biological activity. We hypothesized that a slow-degrading heparin-incorporated hyaluronan (HA) hydrogel can preserve BMP-2; while an arterio–venous (A–V) loop can support axial vascularization to provide nutrition for a bioartificial bone graft. HA was evaluated for osteoblast growth and BMP-2 release. Porous PLDLLA–TCP–PCL scaffolds were produced by rapid prototyping technology and applied in vivo along with HA-hydrogel, loaded with either primary osteoblasts or BMP-2. A microsurgically created A–V loop was placed around the scaffold, encased in an isolation chamber in Lewis rats. HA-hydrogel supported growth of osteoblasts over 8 weeks and allowed sustained release of BMP-2 over 35 days. The A–V loop provided an angiogenic stimulus with the formation of vascularized tissue in the scaffolds. Bone-specific genes were detected by real time RT-PCR after 8 weeks. However, no significant amount of bone was observed histologically. The heterotopic isolation chamber in combination with absent biomechanical stimulation might explain the insufficient bone formation despite adequate expression of bone-related genes. Optimization of the interplay of osteogenic cells and osteo-inductive factors might eventually generate sufficient amounts of axially vascularized bone grafts for reconstructive surgery.
Resumo:
PSA-RP2 is a variant transcript expressed from the PSA gene that is conserved in gorillas, chimpanzees and humans suggesting a particular relevance for this transcript in these primates. We demonstrated by qRT-PCR that PSA-RP2 is upregulated in prostate cancer compared with benign prostatic hyperplasia tissues. The PSA-RP2 protein was not detected in seminal fluid and was cytoplasmically localised but not secreted from LNCaP or transfected PC3 prostate cells, despite secretion from transfected Cos-7 and HEK293 kidney cell lines. PSA-RP2-transfected PC3 cells showed slightly decreased proliferation and increased migration towards PC3-conditioned medium that could suggest a functional role in prostate cancer.
Resumo:
Additive manufacturing techniques offer the potential to fabricate organized tissue constructs to repair or replace damaged or diseased human tissues and organs. Using these techniques, spatial variations of cells along multiple axes with high geometric complexity in combination with different biomaterials can be generated. The level of control offered by these computer-controlled technologies to design and fabricate tissues will accelerate our understanding of the governing factors of tissue formation and function. Moreover, it will provide a valuable tool to study the effect of anatomy on graft performance. In this review, we discuss the rationale for engineering tissues and organs by combining computer-aided design with additive manufacturing technologies that encompass the simultaneous deposition of cells and materials. Current strategies are presented, particularly with respect to limitations due to the lack of suitable polymers, and requirements to move the current concepts to practical application.
Resumo:
133Cs relaxation-time studies of tissues from rats into which cesium has been incorporated by dietary loading have been carried out in vivo and in vitro. Whereas tissue T1 values are on the order of seconds, T2 values are as low as a few tens of milliseconds, 133Cs tissue relaxation times are analogous to those of 39K in the same tissues, but are more readily measured because of the greater sensitivity of 133Cs compared with 39K, T1 and T2 data of excised tissue at two resonance frequencies (65.60 and 39.37 MHz) and temperatures (302 and 278 K) have been analyzed in terms of a general description of spin- relaxation. The results are consistent with most of the cesium ions being in a free state, undergoing fast exchange with bound ions having long correlation times located in one or more intracellular compartments,
Resumo:
The role of individual ocular tissues in mediating changes to the sclera during myopia development is unclear. The aim of this study was to examine the effects of retina, RPE and choroidal tissues from myopic and hyperopic chick eyes on the DNA and glycosaminoglycan (GAG) content in cultures of chick scleral fibroblasts. Primary cultures of fibroblastic cells expressing vimentin and -smooth muscle actin were established in serum-supplemented growth medium from 8-day-old normal chick sclera. The fibroblasts were subsequently co-cultured with posterior eye cup tissue (full thickness containing retina, RPE and choroid) obtained from untreated eyes and eyes wearing translucent diffusers (form-deprivation myopia, FDM) or -15D lenses (lens-induced myopia, LIM) for 3 days (post hatch day 5 to 8) (n=6 per treatment group). The effect of tissues (full thickness and individual retina, RPE, and choroid layers) from -15D (LIM) versus +15D (lens-induced hyperopia, LIH) treated eyes was also determined. Refraction changes in the direction predicted by the visual treatments were confirmed by retinoscopy prior to tissue collection. Glycosaminoglycan (GAG) and DNA content of the scleral fibroblast cultures were measured using GAG and PicoGreen assays. There was no significant difference in the effect of full thickness tissue from either FDM or LIM treated eyes on DNA and GAG content of scleral fibroblasts (DNA 8.9±2.6 µg and 8.4±1.1 µg, p=0.12; GAG 11.2±0.6 µg and 10.1±1.0 µg, p=0.34). Retina from LIM eyes did not alter fibroblast DNA or GAG content compared to retina from LIH eyes (DNA 27.2±1.7 µg versus 23.2±1.5 µg, p=0.21; GAG 28.1±1.7 µg versus. 28.7±1.2 µg, p=0.46). Similarly, the choroid from LIH and LIM eyes did not produce a differential effect on DNA content (DNA, LIM 46.9±6.4 versus LIH 51.5±4.7 µg, p=0.31), whereas GAG content was higher for cells in co-culture with choroid from LIH eyes (GAG 32.5±0.7 µg versus 18.9±1.2 µg, F1,6=9.210, p=0.0002). In contrast, fibroblast DNA was greater in co-culture with RPE from LIM eyes than the empty basket and DNA content less for co-culture with RPE from LIH eyes (LIM: 72.4±6.3 µg versus Empty basket: 46.03±1.0 µg; F1,6=69.99, p=0.0005 and LIH: 27.9±2.3 µg versus empty basket: 46.03±1.0 µg; p=0.0004). GAG content was higher with RPE from LIH eyes (LIH: 33.7±1.9 µg versus empty basket: 29.5±0.8 µg, F1,6=13.99, p=0.010) and lower with RPE from LIM eyes (LIM: 27.7±0.9 µg versus empty basket: 29.5±0.8 µg, p=0.021). GAG content of cells in co-culture with choroid from LIH eyes was higher compared to co-culture with choroid from LIM eyes (32.5±0.7 µg versus 18.9±1.2 µg respectively, F1,6=9.210, p=0.0002). In conclusion, these experiments provide evidence for a directional growth signal that is present (and remains) in the ex-vivo RPE, but that does not remain in the ex-vivo retina. The identity of this factor(s) that can modify scleral cell DNA and GAG content requires further research.