960 resultados para Pulmonary Gas Exchange


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] We aimed to test effects of altitude acclimatization on pulmonary gas exchange at maximal exercise. Six lowlanders were studied at sea level, in acute hypoxia (AH), and after 2 and 8 wk of acclimatization to 4,100 m (2W and 8W) and compared with Aymara high-altitude natives residing at this altitude. As expected, alveolar Po2 was reduced during AH but increased gradually during acclimatization (61 +/- 0.7, 69 +/- 0.9, and 72 +/- 1.4 mmHg in AH, 2W, and 8W, respectively), reaching values significantly higher than in Aymaras (67 +/- 0.6 mmHg). Arterial Po2 (PaO2) also decreased during exercise in AH but increased significantly with acclimatization (51 +/- 1.1, 58 +/- 1.7, and 62 +/- 1.6 mmHg in AH, 2W, and 8W, respectively). PaO2 in lowlanders reached levels that were not different from those in high-altitude natives (66 +/- 1.2 mmHg). Arterial O2 saturation (SaO2) decreased during maximum exercise compared with rest in AH and after 2W and 8W: 73.3 +/- 1.4, 76.9 +/- 1.7, and 79.3 +/- 1.6%, respectively. After 8W, SaO2 in lowlanders was not significantly different from that in Aymaras (82.7 +/- 1%). An improved pulmonary gas exchange with acclimatization was evidenced by a decreased ventilatory equivalent of O2 after 8W: 59 +/- 4, 58 +/- 4, and 52 +/- 4 l x min x l O2(-1), respectively. The ventilatory equivalent of O2 reached levels not different from that of Aymaras (51 +/- 3 l x min x l O2(-1)). However, increases in exercise alveolar Po2 and PaO2 with acclimatization had no net effect on alveolar-arterial Po2 difference in lowlanders (10 +/- 1.3, 11 +/- 1.5, and 10 +/- 2.1 mmHg in AH, 2W, and 8W, respectively), which remained significantly higher than in Aymaras (1 +/- 1.4 mmHg). In conclusion, lowlanders substantially improve pulmonary gas exchange with acclimatization, but even acclimatization for 8 wk is insufficient to achieve levels reached by high-altitude natives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Pulmonary gas exchange and acid-base state were compared in nine Danish lowlanders (L) acclimatized to 5,260 m for 9 wk and seven native Bolivian residents (N) of La Paz (altitude 3,600-4,100 m) brought acutely to this altitude. We evaluated normalcy of arterial pH and assessed pulmonary gas exchange and acid-base balance at rest and during peak exercise when breathing room air and 55% O2. Despite 9 wk at 5,260 m and considerable renal bicarbonate excretion (arterial plasma HCO3- concentration = 15.1 meq/l), resting arterial pH in L was 7.48 +/- 0.007 (significantly greater than 7.40). On the other hand, arterial pH in N was only 7.43 +/- 0.004 (despite arterial O2 saturation of 77%) after ascent from 3,600-4,100 to 5,260 m in 2 h. Maximal power output was similar in the two groups breathing air, whereas on 55% O2 only L showed a significant increase. During exercise in air, arterial PCO2 was 8 Torr lower in L than in N (P < 0.001), yet PO2 was the same such that, at maximal O2 uptake, alveolar-arterial PO2 difference was lower in N (5.3 +/- 1.3 Torr) than in L (10.5 +/- 0.8 Torr), P = 0.004. Calculated O2 diffusing capacity was 40% higher in N than in L and, if referenced to maximal hyperoxic work, capacity was 73% greater in N. Buffering of lactic acid was greater in N, with 20% less increase in base deficit per millimole per liter rise in lactate. These data show in L persistent alkalosis even after 9 wk at 5,260 m. In N, the data show 1) insignificant reduction in exercise capacity when breathing air at 5,260 m compared with breathing 55% O2; 2) very little ventilatory response to acute hypoxemia (judged by arterial pH and arterial PCO2 responses to hyperoxia); 3) during exercise, greater pulmonary diffusing capacity than in L, allowing maintenance of arterial PO2 despite lower ventilation; and 4) better buffering of lactic acid. These results support and extend similar observations concerning adaptation in lung function in these and other high-altitude native groups previously performed at much lower altitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The documented data regarding the three-dimensional structure of the air capillaries (ACs), the ultimate sites of gas exchange in the avian lung is contradictory. Further, the mode of gas exchange, described as cross-current has not been clearly elucidated. We studied the temporal and spatial arrangement of the terminal air conduits of the chicken lung and their relationship with the blood capillaries (BCs) in embryos as well as the definitive architecture in adults. Several visualization techniques that included corrosion casting, light microscopy as well as scanning and transmission electron microscopy were used. Two to six infundibulae extend from each atrium and give rise to numerous ACs that spread centrifugally. Majority of the ACs are tubular structures that give off branches, which anastomose with their neighboring cognates. Some ACs have globular shapes and a few are blind-ending tapering tubes. During inauguration, the luminal aspects of the ACs are characterized by numerous microvillus-like microplicae, which are formed during the complex processes of cell attenuation and canalization of the ACs. The parabronchial exchange BCs, initially inaugurated as disorganized meshworks, are reoriented via pillar formation to lie predominantly orthogonal to the long axes of the ACs. The remodeling of the retiform meshworks by intussusceptive angiogenesis essentially accomplishes a cross-current system at the gas exchange interface in the adults, where BCs form ring-like patterns around the ACs, thus establishing a cross-current system. Our findings clarify the mode of gas exchange in the parabronchial mantle and illuminate the basis for the functional efficiency of the avian lung.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Reasons for performing study:Carbonic anhydrase (CA) catalyses the hydration/dehydration reaction of CO(2) and increases the rate of Cl- and HCO(3)- exchange between the erythrocytes and plasma. Therefore, chronic inhibition of CA has a potential to attenuate CO(2) output and induce greater metabolic and respiratory acidosis in exercising horses.Objectives:To determine the effects of Carbonic anhydrase inhibition on CO(2) output and ionic exchange between erythrocytes and plasma and their influence on acid-base balance in the pulmonary circulation (across the lung) in exercising horses with and without CA inhibition.Methods:Six horses were exercised to exhaustion on a treadmill without (Con) and with CA inhibition (AczTr). CA inhibition was achieved with administration of acetazolamide (10 mg/kg bwt t.i.d. for 3 days and 30 mg/kg bwt before exercise). Arterial, mixed venous blood and CO(2) output were sampled at rest and during exercise. An integrated physicochemical systems approach was used to describe acid base changes.Results:AczTr decreased the duration of exercise by 45% (P < 0.0001). During the transition from rest to exercise CO(2) output was lower in AczTr (P < 0.0001). Arterial PCO(2) (P < 0.0001; mean +/- s.e. 71 +/- 2 mmHg AczTr, 46 +/- 2 mmHg Con) was higher, whereas hydrogen ion (P = 0.01; 12.8 +/- 0.6 nEq/l AczTr, 15.5 +/- 0.6 nEq/l Con) and bicarbonate (P = 0.007; 5.5 +/- 0.7 mEq/l AczTr, 10.1 +/- 1.3 mEq/l Con) differences across the lung were lower in AczTr compared to Con. No difference was observed in weak electrolytes across the lung. Strong ion difference across the lung was lower in AczTr (P = 0.0003; 4.9 +/- 0.8 mEq AczTr, 7.5 +/- 1.2 mEq Con), which was affected by strong ion changes across the lung with exception of lactate.Conclusions:CO(2) and chloride changes in erythrocytes across the lung seem to be the major contributors to acid-base and ions balance in pulmonary circulation in exercising horses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tegu lizard Tupinambis merianae exhibits an episodic ventilatory pattern when dormant at 17 degrees C but a uniform ventilatory pattern when dormant at 25 degrees C. At 17 degrees C, ventilatory episodes were composed of 1-22 breaths interspaced by non-ventilatory periods lasting 1.8-26min, Dormancy at the higher body temperature was accompanied by higher rates of O-2 consumption and ventilation. The increase in ventilation was due only to increases in breathing frequency with no change observed in tidal volume. The air convection requirement for O-2 did not differ at the two body temperatures. The respiratory quotient was 0.8 at 17 degrees C and 1.0 at 25 degrees C. We found no consistent relationship between expired gas composition and the start/end of the ventilatory period during episodic breathing at 17 degrees C. However, following non-ventilatory periods of increasing duration, there was an increase in the pulmonary O-2 extraction that was not coupled to an equivalent increase in elimination of CO2 from the lungs. None of the changes in the variables studied could alone explain the initiation/termination of episodic ventilation in the tegus, suggesting that breathing episodes are shaped by a complex interaction between many variables. The estimated oxidative cost of breathing in dormant tegus at 17 degrees C was equivalent to 52.3% of the total metabolic rate, indicating that breathing is the most costly activity during dormancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anaesthesia causes a respiratory impairment, whether the patient is breathing spontaneously or is ventilated mechanically. This impairment impedes the matching of alveolar ventilation and perfusion and thus the oxygenation of arterial blood. A triggering factor is loss of muscle tone that causes a fall in the resting lung volume, functional residual capacity. This fall promotes airway closure and gas adsorption, leading eventually to alveolar collapse, that is, atelectasis. The higher the oxygen concentration, the faster will the gas be adsorbed and the aleveoli collapse. Preoxygenation is a major cause of atelectasis and continuing use of high oxygen concentration maintains or increases the lung collapse, that typically is 10% or more of the lung tissue. It can exceed 25% to 40%. Perfusion of the atelectasis causes shunt and cyclic airway closure causes regions with low ventilation/perfusion ratios, that add to impaired oxygenation. Ventilation with positive end-expiratory pressure reduces the atelectasis but oxygenation need not improve, because of shift of blood flow down the lung to any remaining atelectatic tissue. Inflation of the lung to an airway pressure of 40 cmH2O recruits almost all collapsed lung and the lung remains open if ventilation is with moderate oxygen concentration (< 40%) but recollapses within a few minutes if ventilation is with 100% oxygen. Severe obesity increases the lung collapse and obstructive lung disease and one-lung anesthesia increase the mismatch of ventilation and perfusion. CO2 pneumoperitoneum increases atelectasis formation but not shunt, likely explained by enhanced hypoxic pulmonary vasoconstriction by CO2. Atelectasis may persist in the postoperative period and contribute to pneumonia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The time course of impairment of respiratory mechanics and gas exchange in the acute respiratory distress syndrome (ARDS) remains poorly defined. We assessed the changes in respiratory mechanics and gas exchange during ARDS. We hypothesized that due to the changes in respiratory mechanics over time, ventilatory strategies based on rigid volume or pressure limits might fail to prevent overdistension throughout the disease process. METHODS: Seventeen severe ARDS patients {PaO2/FiO2 10.1 (9.2-14.3) kPa; 76 (69-107) mmHg [median (25th-75th percentiles)] and bilateral infiltrates} were studied during the acute, intermediate, and late stages of ARDS (at 1-3, 4-6 and 7 days after diagnosis). Severity of lung injury, gas exchange, and hemodynamics were assessed. Pressure-volume (PV) curves of the respiratory system were obtained, and upper and lower inflection points (UIP, LIP) and recruitment were estimated. RESULTS: (1) UIP decreased from early to established (intermediate and late) ARDS [30 (28-30) cmH2O, 27 (25-30) cmH2O and 25 (23-28) cmH2O (P=0.014)]; (2) oxygenation improved in survivors and in patients with non-pulmonary etiology in late ARDS, whereas all patients developed hypercapnia from early to established ARDS; and (3) dead-space ventilation and pulmonary shunt were larger in patients with pulmonary etiology during late ARDS. CONCLUSION: We found a decrease in UIP from acute to established ARDS. If applied to our data, the inspiratory pressure limit advocated by the ARDSnet (30 cmH2O) would produce ventilation over the UIP, with a consequent increased risk of overdistension in 12%, 43% and 65% of our patients during the acute, intermediate and late phases of ARDS, respectively. Lung protective strategies based on fixed tidal volume or pressure limits may thus not fully avoid the risk of lung overdistension throughout ARDS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aim In patients with cystic fibrosis (CF) the architecture of the developing lungs and the ventilation of lung units are progressively affected, influencing intrapulmonary gas mixing and gas exchange. We examined the long-term course of blood gas measurements in relation to characteristics of lung function and the influence of different CFTR genotype upon this process. Methods Serial annual measurements of PaO2 and PaCO2 assessed in relation to lung function, providing functional residual capacity (FRCpleth), lung clearance index (LCI), trapped gas (VTG), airway resistance (sReff), and forced expiratory indices (FEV1, FEF50), were collected in 178 children (88 males; 90 females) with CF, over an age range of 5 to 18 years. Linear mixed model analysis and binary logistic regression analysis were used to define predominant lung function parameters influencing oxygenation and carbon dioxide elimination. Results PaO2 decreased linearly from age 5 to 18 years, and was mainly associated with FRCpleth, (p < 0.0001), FEV1 (p < 0.001), FEF50 (p < 0.002), and LCI (p < 0.002), indicating that oxygenation was associated with the degree of pulmonary hyperinflation, ventilation inhomogeneities and impeded airway function. PaCO2 showed a transitory phase of low PaCO2 values, mainly during the age range of 5 to 12 years. Both PaO2 and PaCO2 presented with different progression slopes within specific CFTR genotypes. Conclusion In the long-term evaluation of gas exchange characteristics, an association with different lung function patterns was found and was closely related to specific genotypes. Early examination of blood gases may reveal hypocarbia, presumably reflecting compensatory mechanisms to improve oxygenation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is essential to have a thorough understanding of the sources and sinks of oxidized nitrogen (NOy) in the atmosphere, since it has a strong influence on the tropospheric chemistry and the eutrophication of ecosystems. One unknown component in the balance of gaseous oxidized nitrogen is vegetation. Plants absorb nitrogenous species from the air via the stomata, but it is not clear whether plants can also emit them at low ambient concentrations. The possible emissions are small and difficult to measure. The aim of this thesis was to analyse an observation made in southern Finland at the SMEAR II station: solar ultraviolet radiation (UV) induced NOy emissions in chambers measuring the gas exchange of Scots pine (Pinus sylvestris L.) shoots. Both measuring and modelling approaches were used in the study. The measurements were performed under noncontrolled field conditions at low ambient NOy concentrations. The chamber blank i.e. artefact NOy emissions from the chamber walls, was dependent on the UV irradiance and increased with time after renewing the Teflon film on chamber surfaces. The contribution of each pine shoot to the total NOy emissions in the chambers was determined by testing whether the emissions decrease when the shoots are removed from their chambers. Emissions did decrease, but only when the chamber interior was exposed to UV radiation. It was concluded that also the pine shoots emit NOy. The possible effects of transpiration on the chamber blank are discussed in the summary part of the thesis, based on previously unpublished data. The possible processes underlying the UV-induced NOy emissions were reviewed. Surface reactions were more likely than metabolic processes. Photolysis of nitrate deposited on the needles may have generated the NOy emissions; the measurements supported this hypothesis. In that case, the emissions apparently would consist mainly of nitrogen dioxide (NO2), nitric oxide (NO) and nitrous acid (HONO). Within studies on NOy exchange of plants, the gases most frequently studied are NO2 and NO (=NOx). In the present work, the implications of the emissions for the NOx exchange of pine were analysed with a model including both NOy emissions and NOy absorption. The model suggested that if the emissions exist, pines can act as an NOx source rather than a sink, even under relatively high ambient concentrations.