938 resultados para Pull-out test
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The bond between steel and concrete is essential for the existence of reinforced concrete structures, as both materials act together to absorb structural strain. The bond phenomenon is considered to be complex regarding many factors that affect it. Several types of bond tests have been proposed over years. One is the modified proposed of pull-out test, which was elaborated by Lorrain and Barbosa [1] called APULOT test (Appropriete pull-out-test). Based on experimental results obtained by Vale Silva[2] either by conventional pull-out tests, or by modified pull-out test, APULOT, seeks to know the numeric behavior of bond steel-concrete through a numerical simulation using a calculation code ATENA which is based on the Finite Element Method (FEM). The numerical simulation provided better evaluate the stress distribution and cracking that occurs during the test, thereby becoming a valuable tool to support the experimental project that aims to validation, validation partially or not recommend the modified bond test steel-concrete - APULOT test - as quality control test of structural concrete. The numerical results showed good representation compared to experimental results.
Resumo:
Composite beams with large web openings are often used, and their design is controlled by Vierendeel bending at the four corners of each opening, which is assisted by local composite action with the floor slab. Development of this Vierendeel bending resistance may be limited by pull-out failure of the shear connectors. In this paper, a non-linear elasto-plastic finite element model of a composite beam with web openings was used to investigate this mode of pull-out failure. A test was performed on a typical composite slab in which the shear connectors were subject to pure tension and the failure load was 67 kN, which is approximately 70% of the longitudinal shear resistance. The results of the finite element model are compared against those obtained using the established design theory, that does not limit the vertical pull-out resistance of the shear connectors. It is shown that the local bending resistance due to composite action should be reduced when limited by pull-out of the shear connectors. A parametric study investigated the effect of openings of 600 to 1200 mm length. A simple model is developed to establish the Vierendeel bending resistance, when limited by pull-out of the shear connectors.
Resumo:
This paper investigates the pull-out behaviour (particularly the bearing resistance) of a steel grid reinforcement embedded in silty sand using laboratory tests and numerical analyses. It is demonstrated that the various common analytical equations for calculating the bearing component of pull-out resistance give a wide range of calculated values, up to about 200% disparity. The disparity will increase further if the issue of whether to use the peak or critical state friction angle is brought in. Furthermore, these equations suggest that the bearing resistance factor, N, is only a function of soil friction angle which is not consistent with some design guidelines. In this investigation, a series of large scale laboratory pull-out tests under different test pressures were conducted. The test results unambiguously confirmed that the N factor is a function of test pressure. A modified equation for calculating N is also proposed. To have more in-depth understanding of the pull-out behaviour, the tests were modelled numerically. The input parameters for the numerical analysis were obtained from laboratory triaxial tests. The analysis results were compared with the experimental results. Good agreement between experimental and numerical results was achieved if the strain-softening behaviour from peak strength to critical state condition was captured by the soil model used. © 2013 Elsevier Ltd.
Resumo:
Introduction: As opposed to the cementation metal posts, the cementation of fiber posts has several details that can significantly influence the success of post retention. This study evaluated the effect of the relining procedure, the cement type, and the luted length of the post on fiber posts retention. Methods: One hundred eighty bovine incisors were selected to assess post retention; after endodontic treatment, the canals were flared with diamonds burs. Post holes were prepared in lengths of 5, 7.5, and 10 mm; the fiber posts were relined with composite resin and luted with RelyX ARC, RelyX Unicem, or RelyX Luting 2. All cements are manufactured by 3M ESPE (St. Paul, MN). Samples were subjected to a pull-out bond strength test in a universal testing machine; the results (N) were submitted to a three-way analysis of variance and the Tukey post hoc test (alpha = 0.05). Results: The improvement of post retention occurred with the increase of the post length luted into the root canal; the relining procedure improved the pull-out bond strength. RelyX Unicem and RelyX ARC showed similar values of retention, both showing higher values than RelyX Luting 2. Conclusion: Post length, the reining procedure, and the cement type are all important factors for improving the retention of fiber posts. (J Endod 2010;36:1543-1546)
Resumo:
The pull-out force of some outer walls against other inner walls in multi-walled carbon nanotubes (MWCNTs) was systematically studied by molecular mechanics simulations. The obtained results reveal that the pull-out force is proportional to the square of the diameter of the immediate outer wall on the sliding interface, which highlights the primary contribution of the capped section of MWCNT to the pull-out force. A simple empirical formula was proposed based on the numerical results to predict the pull-out force for an arbitrary pull-out in a given MWCNT directly from the diameter of the immediate outer wall on the sliding interface. Moreover, tensile tests for MWCNTs with and without acid-treatment were performed with a nanomanipulator inside a vacuum chamber of a scanning electron microscope (SEM) to validate the present empirical formula. It was found that the theoretical pull-out forces agree with the present and some previous experimental results very well.
Resumo:
When steel roof and wall cladding systems are subjected to wind uplift/suction forces, local pull-through/dimpling failures or pull-out failures occur prematurely at their screwed connections. During extreme wind events such as storms and hurricanes, these localized failures then lead to severe damage to buildings and their contents. An investigation was therefore carried out to study the failure that occurs when the screw fastener pulls out of the steel battens, purlins, or girts. Both two-span cladding tests and small-scale tests were conducted using a range of commonly used screw fasteners and steel battens, purlins, and girts. Experimental results showed that the current design formula may not be suitable unless a reduced capacity factor of 0.4 is used. Therefore, an improved design formula has been developed for pull-out failures in steel cladding systems. The formula takes into account thickness and ultimate tensile strength of steel, along with thread diameter and the pitch of screw fasteners, in order to model the pull-out behavior more accurately. This paper presents the details of this experimental investigation and its results.
Resumo:
When crest-fixed thin steel roof cladding systems are subjected to wind uplift, local pull-through or pull-out failures occur prematurely at their screwed connections. During high wind events such as storms and cyclones these localised failures then lead to severe damage to buildings and their contents. In recent times, the use of thin steel battens/purlins has increased considerably. This has made the pull-out failures more critical in the design of steel cladding systems. Recent research has developed a design formula for the static pull-out strength of steel cladding systems. However, the effects of fluctuating wind uplift loading that occurs during high wind events are not known. Therefore a series of constant amplitude cyclic tests has been undertaken on connections between steel battens made of different thicknesses and steel grades, and screw fasteners with varying diameter and pitch. This paper presents the details of these cyclic tests and the results.
Resumo:
When thin steel roof and wall cladding systems are subjected to wind uplift/suction forces, local pull-through or pull-out failures occur prematurely at their screwed connections. During high wind events such as stom1s and cyclones, these localized failures then lead to severe damage to buildings and their contents. In recent times, the use of thin steel battens, purlins and girts has increased considerably, which has made the pull-out failures more critical in the design of steel cladding systems. An experimental investigation was therefore carried out to study the pull-out failure using both static and cyclic tests for a range of commonly used screw fasteners and steel battens, purlins and girts. This paper presents the details ofthis experimental investigation and its results.