31 resultados para Psittaciformes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cockatoos are the distinctive family Cacatuidae, a major lineage of the order of parrots (Psittaciformes) and distributed throughout the Australasian region of the world. However, the evolutionary history of cockatoos is not well understood. We investigated the phylogeny of cockatoos based on three mitochondrial and three nuclear DNA genes obtained from 16 of 21 species of Cacatuidae. In addition, five novel mitochondrial genomes were used to estimate time of divergence and our estimates indicate Cacatuidae diverged from Psittacidae approximately 40.7 million years ago (95% CI 51.6–30.3 Ma) during the Eocene. Our data shows Cacatuidae began to diversify approximately 27.9 Ma (95% CI 38.1–18.3 Ma) during the Oligocene. The early to middle Miocene (20–10 Ma) was a significant period in the evolution of modern Australian environments and vegetation, in which a transformation from mainly mesic to xeric habitats (e.g., fire-adapted sclerophyll vegetation and grasslands) occurred. We hypothesize that this environmental transformation was a driving force behind the diversification of cockatoos. A detailed multi-locus molecular phylogeny enabled us to resolve the phylogenetic placements of the Palm Cockatoo (Probosciger aterrimus), Galah (Eolophus roseicapillus), Gang-gang Cockatoo (Callocephalon fimbriatum) and Cockatiel (Nymphicus hollandicus), which have historically been difficult to place within Cacatuidae. When the molecular evidence is analysed in concert with morphology, it is clear that many of the cockatoo species’ diagnostic phenotypic traits such as plumage colour, body size, wing shape and bill morphology have evolved in parallel or convergently across lineages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The karyotypes of 12 species of Psittaciformes new to cytology are described: Lorius hypoinochrous, L. lory and Phigys solitarius of the Loriidae, and Amazona autumnallis, Aratinga jandaya, Eclectus roratus, Pionus maximiliani, P. menstruus, P. senilis, P. seniloides, Poicephalus senegalus and Polytelis alexandrae of the Psittacidae. The karyotypes of Amazona ochrocephala, Ara ararauna, Ara macao, Psittacula krameri, Psittacus erithacus and Pyrrhura molinae of the Psittacidae have been previously described. For reasons of comparison the karyotypes of Aratinga aurea, Forpus xanthopterygius, Brotogeris sanctithomae and B. versicolorus of the Psittacidae are also described. These karyotypes are compared to those in the literature and the karyological relationships in the Psittaciformes are briefly discussed. Microchromosome fusions and translocations and pericentric inversions probably are responsible for the heterogeneity of karyotypes in the Psittaciformes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli is a bacteria of the Enterobacteriacea family and it is part of the enterical microflora of mammals and of many species of birds. Salmonella spp. also belongs to the family Enterobacteriacea, it is responsible for human feed toxinfection outbreaks and usually isolated from domestic and wild birds. The present study analyzed the frequency of both agents in Psittaciformes in rehabilitation process for wildlife reintroduction. In 89 birds analyzed, 19% were infected with E. coli and 1,12% with Salmonella spp. It was carried out an analysis of the profile of antibiotic resistance in which was observed the efficiency of estreptomicin, tetraciclin, trimetoprim and gentamicin over the samples. The samples of E. coli were submitted to the Congo Red Binding test and to the Hemolisis test and 70,6% of positive samples for the first test and 53% for the second one were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Ayes). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beak and feather disease virus (BFDV), the causative agent of psittacine beak and feather disease (PBFD) infects psittaciformes worldwide. We provide an annotated sequence record of three full-length unique genomes of BFDV isolates from budgerigars (Melopsittacus undulatus) from a breeding farm in South Africa. The isolates share >99% nucleotide sequence identity with each other and ~96% nucleotide sequence identity to two recent isolates (Melopsittacus undulatus) from Thailand but only between 91. 6 and 86. 6% identity with all other full-length BFDV sequences. Maximum-likelihood analysis and recombination analysis suggest that the South African budgerigar BFDV isolates are unique to budgerigars, are non-recombinant in origin, and represent a new genotype of BFDV. © 2010 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The availability of multiple avian genome sequence assemblies greatly improves our ability to define overall genome organization and reconstruct evolutionary changes. In birds, this has previously been impeded by a near intractable karyotype and relied almost exclusively on comparative molecular cytogenetics of only the largest chromosomes. Here, novel whole genome sequence information from 21 avian genome sequences (most newly assembled) made available on an interactive browser (Evolution Highway) was analyzed. RESULTS: Focusing on the six best-assembled genomes allowed us to assemble a putative karyotype of the dinosaur ancestor for each chromosome. Reconstructing evolutionary events that led to each species' genome organization, we determined that the fastest rate of change occurred in the zebra finch and budgerigar, consistent with rapid speciation events in the Passeriformes and Psittaciformes. Intra- and interchromosomal changes were explained most parsimoniously by a series of inversions and translocations respectively, with breakpoint reuse being commonplace. Analyzing chicken and zebra finch, we found little evidence to support the hypothesis of an association of evolutionary breakpoint regions with recombination hotspots but some evidence to support the hypothesis that microchromosomes largely represent conserved blocks of synteny in the majority of the 21 species analyzed. All but one species showed the expected number of microchromosomal rearrangements predicted by the haploid chromosome count. Ostrich, however, appeared to retain an overall karyotype structure of 2n=80 despite undergoing a large number (26) of hitherto un-described interchromosomal changes. CONCLUSIONS: Results suggest that mechanisms exist to preserve a static overall avian karyotype/genomic structure, including the microchromosomes, with widespread interchromosomal change occurring rarely (e.g., in ostrich and budgerigar lineages). Of the species analyzed, the chicken lineage appeared to have undergone the fewest changes compared to the dinosaur ancestor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim We present a molecular phylogenetic analysis of Brotogeris (Psittacidae) using several distinct and complementary approaches: we test the monophyly of the genus, delineate the basal taxa within it, uncover their phylogenetic relationships, and finally, based on these results, we perform temporal and spatial comparative analyses to help elucidate the historical biogeography of the Neotropical region. Location Neotropical lowlands, including dry and humid forests. Methods Phylogenetic relationships within Brotogeris were investigated using the complete sequences of the mitochondrial genes cyt b and ND2, and partial sequences of the nuclear intron 7 of the gene for Beta Fibrinogen for all eight species and 12 of the 17 taxa recognized within the genus (total of 63 individuals). In order to delinetae the basal taxa within the genus we used both molecular and plumage variation, the latter being based on the examination of 597 skin specimens. Dates of divergence and confidence intervals were estimated using penalized likelihood. Spatial and temporal comparative analyses were performed including several closely related parrot genera. Results Brotogeris was found to be a monophyletic genus, sister to Myiopsitta. The phylogenetic analyses recovered eight well-supported clades representing the recognized biological species. Although some described subspecies are diagnosably distinct based on morphology, there was generally little intraspecific mtDNA variation. The Amazonian species had different phylogenetic affinities and did not group in a monophyletic clade. Brotogeris diversification took place during the last 6 Myr, the same time-frame as previously found for Pionus and Pyrilia. Main conclusions The biogeographical history of Brotogeris implies a dynamic history for South American biomes since the Pliocene. It corroborates the idea that the geological evolution of Amazonia has been important in shaping its biodiversity, argues against the idea that the region has been environmentally stable during the Quaternary, and suggests dynamic interactions between wet and dry forest habitats in South America, with representatives of the Amazonian biota having several independent close relationships with taxa endemic to other biomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydophila psittaci (C. psittaci) has been detected in 460 avian species, among them the most frequent are the Psittaciformes, Columbiformes, Anseriformes and raptors. In Brazil, the main avian species recognized as healthy carriers belong to the order Psittaciformes and Columbiformes, but very few studies have been done in other bird families. Reports of the occurrence of this disease in the clinical form are rare in the Ramphastids; consequently, they are not commonly evaluated for this agent. The present study reports the investigation of C. psittaci in 25 captive ramphastids from a zoological park in São Paulo State, Brazil. Swabs samples from the cloaca were submitted to semi-nested polymerase chain reaction (semi-nested PCR) for direct detection of the microorganism. Additionally, blood samples obtained from these birds were submitted to the Complement Fixation Test (CFT) for detection of antibodies anti-C. psittaci. The presence of C. psittaci was not detected in the cloacal swab samples tested by the PCR. Nevertheless, 16% (4/25) of the bird's sera were positive by the CFT. Among the species with positive results, there are the saffron toucanet (Pteroglossus bailloni) and black-necked-aracari (Pteroglossus aracari), two species with no descriptions of the survey of C. psittaci published in the literature. Intermittent elimination of C. psittaci is a feature of chronically infected birds; however the absence of a positive-antigen sample did not guarantee that the bird is Chlamydophila-free. The serological results obtained show that the ramphastids tested were previously exposed to the pathogen and developed immune response, but showed no clinical signs of the disease and didn't eliminate regularly the organism in their feces in the moment of the sample collection.