3 resultados para Pseudoroegneria stipifolia
Resumo:
The x- and y-type high molecular weight (HMW) glutenin subunits are conserved seed storage proteins in wheat and related species. Here we describe investigations on the HMW glutenin subunits from several Pseudoroegneria accessions. The electrophoretic mobilities of the HMW glutenin subunits from Pd. stipifolia, Pd tauri and Pd strigosa were much faster than those of orthologous wheat subunits, indicating that their protein size may be smaller than that of wheat subunits. The coding sequence of the Glu-1St1 subunit (encoded by the Pseudoroegneria stipifolia accession PI325181) was isolated, and found to represent the native open reading frame (ORF) by in vitro expression. The deduced amino acid sequence of Glu-1St1 matched with that determined from the native subunit by mass spectrometric analysis. The domain organization in Glu-1St1 showed high similarity with that of typical HMW glutenin subunits. However, Glu-1St1 exhibited several distinct characteristics. First, the length of its repetitive domain was substantially smaller than that of conventional subunits, which explains its much faster electrophoretic mobility in SDS-PAGE. Second, although the N-terminal domain of Glu-1St1 resembled that of y-type subunit, its C-terminal domain was more similar to that of x-type subunit. Third, the N- and C-terminat domains of Glu-1St1 shared conserved features with those of barley D-hordein, but the repeat motifs and the organization of its repetitive domain were more similar to those of HMW glutenin subunits than to D-hordein. We conclude that Glu-1St1 is a novel variant of HMW glutenin subunits. The analysis of Glu-1St1 may provide new insight into the evolution of HMW glutenin subunits in Triticeae species. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
禾本科Poaceae小麦族Triticeae Dumort.的多年生物种是该族的重要组成部分,约占该族植物总数的三分之二以上,广泛地分布于全世界各地,主要集中于北半球温带地区。由于小麦族多年生植物的种类繁多,生态环境多样、种间和种内的形态变异极大,而大多数多年生物种又具有多倍体起源,加之属间及种间的天然杂交也十分频繁,以致于造成了其系统学研究的巨大困难。通过近三十年来对小麦族植物的大量属间和种间杂交以及对其杂种的减数分裂染色体配对行为分析,对该族各个属的染色体组构成及其在进化上的关系和意义已经有了较为深入的认识。小麦族中的多倍体属是由来源不同的二倍体祖先属经过天然杂交和染色体自然加倍而形成,因而研究和分析各个二倍体属之间及与多倍体属间的染色体组亲缘关系,为揭示小麦族各属、种之间的系统与进化关系提供了非常有价值的资料。本研究通过对一些小麦族多年生植物的形态学、地理分布、属间和种间杂交以及染色体组之间的亲缘关系的一系列研究,对不同属以及同一属内不同组的物种之间的进化关系进行了深入的分析,并对其系统学进行了讨论。同时对于一些异常的细胞遗传学现象,如染色体在属间杂种的缺失、重复以及染色体配对的遗传控制也作了初步的分析。通过上述研究,本研究对于小麦族多年生的一些属、特别是披碱草属Elymus厶、拟鹅观草属Pseudorocgneria Love和大麦披碱草属Hordelymus (Jessen) Harz,的染色体组构成以及与各物种的形态学关系,物种之间的进化关系均有了更为深刻的认识。
Resumo:
Genomic constitutions of three taxa of Hystrix Moench, H. patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata, were examined by meiotic pairing behavior and genomic in-situ hybridization. Meiotic pairing in hybrids of H. patula x Pseudoroegneria spicata (St), H. patula x Elymus wawawaiensis (StH), H. patula x H. duthiei ssp. longearistata, H. patula x Psathyrostachys huashanica (Ns(h)), H. duthiei ssp. duthiei x Psa. huashanica, H. duthiei ssp. longearistata x Psa. huashanica, Leymus multicaulis (NsXm) x H. duthiei ssp. longearistata averaged 6.53, 12.83, 1.32, 0.29, 5.18, 5.11 and 10.47 bivalents per cell, respectively. The results indicate that H. patula has the StH genome and H. duthiei ssp. duthiei and H. duthiei ssp. longearistata have the NsXm genome. Results of genomic in-situ hybridization analysis strongly supported the chromosome pairing data; therefore it is concluded that the type species of Hystrix, H. patula, should be included in Elymus, and that H. duthiei ssp. duthiei and H. duthiei ssp. longearistata should be transferred to Leymus.