11 resultados para Pseudoephedrine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of pseudoephedrine as a practical chiral auxiliary for asymmetric synthesis is describe. Both enantiomers of pseudoephedrine are inexpensive commodity chemicals and can be N-acylated in high yields to form tertiary amides. In the presence of lithium chloride, the enolates of the corresponding pseudoephedrine amides undergo highly diastereoselective a1kylations with a wide range of alkyl halides to afford α-substituted products in high yields. These products can then be transformed in a single operation into highly enantiomerically enriched carboxylic acids, alcohols, and aldehydes. Lithium amidotrihydroborate (LAB) is shown to be a powerful reductant for the selective reduction of tertiary amides in general and pseudoephedrine amides in particular to form primary alcohols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-silico optimised two-dimensional high performance liquid chromatographic (2D-HPLC) separations of a model methamphetamine seizure sample are described, where an excellent match between simulated and real separations was observed. Targeted separation of model compounds was completed with significantly reduced method development time. This separation was completed in the heart-cutting mode of 2D-HPLC where C18 columns were used in both dimensions taking advantage of the selectivity difference of methanol and acetonitrile as the mobile phases. This method development protocol is most significant when optimising the separation of chemically similar chemical compounds as it eliminates potentially hours of trial and error injections to identify the optimised experimental conditions. After only four screening injections the gradient profile for both 2D-HPLC dimensions could be optimised via simulations, ensuring the baseline resolution of diastereomers (ephedrine and pseudoephedrine) in 9.7 min. Depending on which diastereomer is present the potential synthetic pathway can be categorized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this project was to develop and pharmacologically characterize an experimental dog model of nasal congestion in which nasal patency is measured using acoustic rhinometry. Solubilized compound 48/80 (0.3-3.0%) was administered intranasally to thiopental anesthetized beagle dogs to elicit nasal congestion via localized mast cell degranulation. Compound 48/80-induced effects on parameters of nasal patency were studied in vehicle-treated animals, as well as in the same animals pretreated 2 hours earlier with oral d-pseudoephedrine or chlorpheniramine. Local mast cell degranulation caused a close-related decrease in nasal cavity volume and minimal cross-sectional area (Amin) together with a highly variable increase in nasal secretions. Maximal responses were seen at 90-120 minutes after 48/80 administration. Oral administration of the adrenergic agonist, d-pseudoephedrine (3.0 mg/kg), significantly antagonized all of the nasal effects of compound 48/80 (3.0%). In contrast, oral administration of the histamine H1 receptor antagonist chlorpheniramine (10 mg/kg) appeared to reduce the increased nasal secretions but was without effect on the compound 48/ 80-induced nasal congestion (i.e., volume and Amin). These results show the effectiveness of using acoustic rhinometry in this anesthetized dog model. The observations that compound 48/80-induced nasal congestion was prevented by d-pseudoephedrine pretreatment, but not by chlorpheniramine, suggest that this noninvasive model system may provide an effective tool with which to study the actions of decongestant drugs in preclinical investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nasal congestion is one of the most troublesome symptoms of many upper airways diseases. We characterized the effect of selective α2c-adrenergic agonists in animal models of nasal congestion. In porcine mucosa tissue, compound A and compound B contracted nasal veins with only modest effects on arteries. In in vivo experiments, we examined the nasal decongestant dose-response characteristics, pharmacokinetic/pharmacodynamic relationship, duration of action, potential development of tolerance, and topical efficacy of α2c-adrenergic agonists. Acoustic rhinometry was used to determine nasal cavity dimensions following intranasal compound 48/80 (1%, 75 µl). In feline experiments, compound 48/80 decreased nasal cavity volume and minimum cross-sectional areas by 77% and 40%, respectively. Oral administration of compound A (0.1-3.0 mg/kg), compound B (0.3-5.0 mg/kg), and d-pseudoephedrine (0.3 and 1.0 mg/kg) produced dose-dependent decongestion. Unlike d-pseudoephedrine, compounds A and B did not alter systolic blood pressure. The plasma exposure of compound A to produce a robust decongestion (EC(80)) was 500 nM, which related well to the duration of action of approximately 4.0 hours. No tolerance to the decongestant effect of compound A (1.0 mg/kg p.o.) was observed. To study the topical efficacies of compounds A and B, the drugs were given topically 30 minutes after compound 48/80 (a therapeutic paradigm) where both agents reversed nasal congestion. Finally, nasal-decongestive activity was confirmed in the dog. We demonstrate that α2c-adrenergic agonists behave as nasal decongestants without cardiovascular actions in animal models of upper airway congestion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. NaCl has proven to be an effective bitterness inhibitor, but the reason remains unclear. The purpose of this study was to examine the influence of a variety of cations and anions on the bitterness of selected oral pharmaceuticals and bitter taste stimuli: pseudoephedrine, ranitidine, acetaminophen, quinine, and urea.
Method. Human psychophysical taste evaluation using a whole mouth exposure procedure was used.
Results. The cations (all associated with the acetate anion) inhibited bitterness when mixed with pharmaceutical solutions to varying degrees. The sodium cation significantly (P < 0.003) inhibited bitterness of the pharmaceuticals more than the other cations. The anions (all associated with the sodium cation) also inhibited bitterness to varying degrees. With the exception of salicylate, the glutamate and adenosine monophosphate anions significantly (P < 0.001) inhibited bitterness of the pharmaceuticals more than the other anions. Also, there were several specific inhibitory interactions between ammonium, sodium and salicylate and certain pharmaceuticals.
Conclusions. We conclude that sodium was the most successful cation and glutamate and AMP were the most successful anions at inhibiting bitterness. Structure forming and breaking properties of ions, as predicted by the Hofmeister series, and other physical-chemical ion properties failed to significantly predict bitterness inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Zinc sulfate is known to inhibit the bitterness of the antimalarial agent quinine [R. S. J. Keast. The effect of zinc on human taste perception. J. Food Sci. 68:1871–1877 (2003)]. In the present work, we investigated whether zinc sulfate would inhibit other bitter-tasting compounds and pharmaceuticals. The utility of zinc as a general bitterness inhibitor is compromised, however, by the fact that it is also a good sweetness inhibitor [R. S. J. Keast, T. Canty, and P. A. S. Breslin. Oral zinc sulfate solutions inhibit sweet taste perception. Chem. Senses 29:513–521 (2004)] and would interfere with the taste of complex formulations. Yet, zinc sulfate does not inhibit the sweetener Na-cyclamate. Thus, we determined whether a mixture of zinc sulfate and Na-cyclamate would be a particularly effective combination for bitterness inhibition (Zn) and masking (cyclamate).

Method We used human taste psychophysical procedures with chemical solutions to assess bitterness blocking.

Results Zinc sulfate significantly inhibited the bitterness of quinine–HCl, Tetralone, and denatonium benzoate (DB) (p < 0.05), but had no significant effect on the bitterness of sucrose octa-acetate, pseudoephedrine (PSE), and dextromethorphan. A second experiment examined the influence of zinc sulfate on bittersweet mixtures. The bitter compounds were DB and PSE, and the sweeteners were sucrose (inhibited by 25 mM zinc sulfate) and Na-cyclamate (not inhibited by zinc sulfate). The combination of zinc sulfate and Na-cyclamate most effectively inhibited DB bitterness (86%) (p < 0.0016), whereas the mixture's inhibition of PSE bitterness was not different from that of Na-cyclamate alone.

Conclusion A combination of Na-cyclamate and zinc sulfate was most effective at inhibiting bitterness. Thus, the combined use of peripheral oral and central cognitive bitterness reduction strategies should be particularly effective for improving the flavor profile of bitter-tasting foods and pharmaceutical formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australian clandestine drug laboratories are constantly utilising alternative methods to produce methamphetamine, in part as restrictions are placed by Government on, for example, chemicals such as phenyl-2-propanone (P2P) (in the early 1980s), or on pseudoephedrine-containing pharmaceuticals, from the mid-2000s. This paper discusses the nitro-aldol reaction occurring between nitroethane and benzaldehyde, which can be utilised in a number of differing routes, in the presence of different bases. The resulting products, namely phenyl-2-nitropropene (P2P pathway) and 2-nitro-1-phenyl-1-propanol (ephedrine pathway) are directly dependant on which base is used; as such, the base may be used to provide an indication of a possible manufacture pathway of methamphetamine at a clandestine laboratory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In-silico optimisation of a two-dimensional high performance liquid chromatography (2D-HPLC) separation protocol has been developed for the interogation of methamphetamine samples including model, real world seizure, and laboratory synthesised samples. The protocol used Drylab® software to rapidly identify the optimum separation conditions from a library of chromatography columns. The optimum separation space was provided by the Phenomonex Kinetex PFP column (first dimension) and an Agilent Poroshell 120 EC-C18 column (second dimension). To facilitate a rapid 2D-HPLC analysis the particle packed C18 column was replaced with a Phenomenex Onyx Monolithic C18 withought sacrificing separation performance. The Drylab® optimised and experimental separations matched very closely, highlighting the robust nature of HPLC simulations. The chemical information gained from an intermediate methamphetamine sample was significant and complimented that generated from a pure seizure sample. The influence of the two-dimensional separation on the analytical figures of merit was also investigated. The limits of detection for key analytes in the second dimension determined for methamphetamine (4.59 × 10-⁴ M), pseudoephedrine (4.03 × 10-4 M), caffeine (5.16 × 10-⁴ M), aspirin (9.32 × 10-4 M), paracetamol (5.93 × 10-4 M) and procaine (2.02 × 10-3 M).