981 resultados para Proxy-data
Resumo:
Drought frequency analysis can be performed with statistical techniques developed for determining recurrence intervals for extreme precipitation and flood events (Linsley et al 1992). The drought analysis method discussed in this paper uses the log-Pearson Type III distribution, which has been widely used in flood frequency research. Some of the difficulties encountered when using this distribution for drought analysis are investigated.
Peat multi-proxy data from Mannikjarve bog as indicators of late Holocene climate changes in Estonia
Resumo:
As part of a wider project on European climate change over the past 4500 years, a 4.5-m peat core was taken from a lawn microform on Mannikjarve bog, Estonia. Several methods were used to yield proxy-climate data: (i) a quadrat and leaf-count method for plant macrofossil data, (ii) testate amoebae analysis, and (iii) colorimetric determination of peat humification. These data are provided with an exceptionally high resolution and precise chronology. Changes in bog surface wetness were inferred using Detrended Correspondence Analysis (DCA) and zonation of macrofossil data, particularly concerning the occurrence of Sphagnum balticum, and a transfer function for water-table depth for testate amoebae data. Based on the results, periods of high bog surface wetness appear to have occurred at c. 3100, 3010-2990, 2300, 1750-1610, 1510, 14 10, 1110, 540 and 3 10 cal. yr BP, during four longer periods between c. 3170 and 2850 cal. yr BP, 2450 and 2000 cal. yr BP, 1770 and 1530 cal. yr BP and in the period from 880 cal. yr BP until the present. In the period between 1770 and 1530 cal. yr BP. the extension or initiation of a hollow microtope occurred, which corresponds with other research results from Mannikjarve bog. This and other changes towards increasing bog surface wetness may be the responses to colder temperatures and the predominance of a more continental climate in the region, which favoured the development of bog microdepressions and a complex bog microtopography. Located in the border zone of oceanic and continental climatic sectors, in an area almost without land uplift, this study site may provide valuable information about changes in palaeohydrological and palaeoclimatological conditions in the northern parts of the eastern Baltic Sea region.
Resumo:
A wealth of palaeoecological studies (e.g. pollen, diatoms, chironomids and macrofossils from deposits such as lakes or bogs) have revealed major as well as more subtle ecosystem changes over decadal to multimillennial timescales. Such ecosystem changes are usually assumed to have been forced by specific environmental changes. Here, we test if the observed changes in palaeoecological records may be reproduced by random simulations, and we find that simple procedures generate abrupt events, long-term trends, quasi-cyclic behaviour, extinctions and immigrations. Our results highlight the importance of replicated and multiproxy data for reliable reconstructions of past climate and environmental changes.
Resumo:
Initial findings from high-latitude ice-cores implied a relatively unvarying Holocene climate, in contrast to the major climate swings in the preceding late-Pleistocene. However, several climate archives from low latitudes imply a less than equable Holocene climate, as do recent studies on peat bogs in mainland north-west Europe, which indicate an abrupt climate cooling 2800 years ago, with parallels claimed in a range of climate archives elsewhere. A hypothesis that this claimed climate shift was global, and caused by reduced solar activity, has recently been disputed. Until now, no directly comparable data were available from the southern hemisphere to help resolve the dispute. Building on investigations of the vegetation history of an extensive mire in the Valle de Andorra, Tierra del Fuego, we took a further peat core from the bog to generate a high-resolution climate history through the use of determination of peat hurnification and quantitative leaf-count plant macrofossil analysis. Here, we present the new proxy-climate data from the bog in South America. The data are directly comparable with those in Europe, as they were produced using identical laboratory methods. They show that there was a major climate perturbation at the same time as in northwest European bogs. Its timinia, nature and apparent global synchronicity lend support to the notion of solar forcing of past climate change, amplified by oceanic circulation. This finding of a similar response simultaneously in both hemispheres may help validate and improve global climate models. That reduced solar activity might cause a global climatic change suggests that attention be paid also to consideration of any global climate response to increases in solar activity. This has implications for interpreting the relative contribution of climate drivers of recent 'global warming'. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Last Glacial Maximum simulated sea surface temperature from the Paleo-Climate version of the National Center for Atmospheric Research Coupled Climate Model (NCAR-CCSM) are compared with available reconstructions and data-based products in the tropical and south Atlantic region. Model results are compared to data proxies based on the Multiproxy Approach for the Reconstruction of the Glacial Ocean surface product (MARGO). Results show that the model sea surface temperature is not consistent with the proxy-data in all of the region of interest. Discrepancies are found in the eastern, equatorial and in the high-latitude South Atlantic. The model overestimates the cooling in the southern South Atlantic (near 50 degrees S) shown by the proxy-data. Near the equator, model and proxies are in better agreement. In the eastern part of the equatorial basin the model underestimates the cooling shown by all proxies. A northward shift in the position of the subtropical convergence zone in the simulation suggests a compression or/and an equatorward shift of the subtropical gyre at the surface, consistent with what is observed in the proxy reconstruction. (C) 2008 Elsevier B.V. All rights reserved
Resumo:
The atmosphere is a global influence on the movement of heat and humidity between the continents, and thus significantly affects climate variability. Information about atmospheric circulation are of major importance for the understanding of different climatic conditions. Dust deposits from maar lakes and dry maars from the Eifel Volcanic Field (Germany) are therefore used as proxy data for the reconstruction of past aeolian dynamics.rnrnIn this thesis past two sediment cores from the Eifel region are examined: the core SM3 from Lake Schalkenmehren and the core DE3 from the Dehner dry maar. Both cores contain the tephra of the Laacher See eruption, which is dated to 12,900 before present. Taken together the cores cover the last 60,000 years: SM3 the Holocene and DE3 the marine isotope stages MIS-3 and MIS-2, respectively. The frequencies of glacial dust storm events and their paleo wind direction are detected by high resolution grain size and provenance analysis of the lake sediments. Therefore two different methods are applied: geochemical measurements of the sediment using µXRF-scanning and the particle analysis method RADIUS (rapid particle analysis of digital images by ultra-high-resolution scanning of thin sections).rnIt is shown that single dust layers in the lake sediment are characterized by an increased content of aeolian transported carbonate particles. The limestone-bearing Eifel-North-South zone is the most likely source for the carbonate rich aeolian dust in the lake sediments of the Dehner dry maar. The dry maar is located on the western side of the Eifel-North-South zone. Thus, carbonate rich aeolian sediment is most likely to be transported towards the Dehner dry maar within easterly winds. A methodology is developed which limits the detection to the aeolian transported carbonate particles in the sediment, the RADIUS-carbonate module.rnrnIn summary, during the marine isotope stage MIS-3 the storm frequency and the east wind frequency are both increased in comparison to MIS-2. These results leads to the suggestion that atmospheric circulation was affected by more turbulent conditions during MIS-3 in comparison to the more stable atmospheric circulation during the full glacial conditions of MIS-2.rnThe results of the investigations of the dust records are finally evaluated in relation a study of atmospheric general circulation models for a comprehensive interpretation. Here, AGCM experiments (ECHAM3 and ECHAM4) with different prescribed SST patterns are used to develop a synoptic interpretation of long-persisting east wind conditions and of east wind storm events, which are suggested to lead to an enhanced accumulation of sediment being transported by easterly winds to the proxy site of the Dehner dry maar.rnrnThe basic observations made on the proxy record are also illustrated in the 10 m-wind vectors in the different model experiments under glacial conditions with different prescribed sea surface temperature patterns. Furthermore, the analysis of long-persisting east wind conditions in the AGCM data shows a stronger seasonality under glacial conditions: all the different experiments are characterized by an increase of the relative importance of the LEWIC during spring and summer. The different glacial experiments consistently show a shift from a long-lasting high over the Baltic Sea towards the NW, directly above the Scandinavian Ice Sheet, together with contemporary enhanced westerly circulation over the North Atlantic.rnrnThis thesis is a comprehensive analysis of atmospheric circulation patterns during the last glacial period. It has been possible to reconstruct important elements of the glacial paleo climate in Central Europe. While the proxy data from sediment cores lead to a binary signal of the wind direction changes (east versus west wind), a synoptic interpretation using atmospheric circulation models is successful. This shows a possible distribution of high and low pressure areas and thus the direction and strength of wind fields which have the capacity to transport dust. In conclusion, the combination of numerical models, to enhance understanding of processes in the climate system, with proxy data from the environmental record is the key to a comprehensive approach to paleo climatic reconstruction.rn
Resumo:
We present the first 7500 yr long multi-proxy record from a raised bog located at the southern Baltic coast, Poland. Testate amoebae, plant macrofossils, pollen and microscopic charcoal were used to reconstruct environmental changes in Pomerania (northern Poland, Kaszuby Lakeland) from a 7-m thick peat archive of Stążki bog dated 5500 BC–AD 1250. We obtained a record of proxies representing different spatial scales: regional vegetation changed simultaneously with local vegetation, and testate amoebae showed a pattern of change similar to that of pollen and plant macrofossils. On the basis of the combined proxies, we distinguished three hydroclimatic stages: moist conditions 5500–3450 BC, drier conditions with regionally increased fires up to 600 BC, and again moist conditions from 600 BC onward. During the drier interval, a first climatic shift to wetter conditions at 1700 BC is indicated by regional pollen as the replacement of Corylus by Carpinus, and locally by, e.g., the increase of Hyalosphenia elegans and mire plants such as Sphagnum sec. Cuspidata. Furthermore, we observed a correlation since 600 BC among the re-expansion of Carpinus (after a sudden decline ca. 950 BC), increased peat accumulation, increase of Hyalosphenia species, and fewer fires, suggesting lower evapotranspiration and a stable high water table in the bog. Fagus started to expand after AD 810 gradually replacing Carpinus, which was possibly due to a gradually more oceanic climate, though we cannot exclude human impact on the forests. Peat accumulation, determined by radiocarbon dating, varied with bog surface wetness. The hydroclimatic phases found in Stążki peatland are similar to moisture changes recorded in other sites from Poland and Europe. This is the first detailed record of hydroclimatic change during the Holocene in the southern Baltic region, so it forms a reference site for further studies on other southern Baltic bogs that are in progress.
Resumo:
We present new annual sedimentological proxies and sub-annual element scanner data from the Lago Grande di Monticchio (MON) sediment record for the sequence 76-112 thousand years before present (ka). They are combined with the previously published decadal to centennial resolved pollen assemblage in order to provide a comprehensive reconstruction of six major abrupt stadial spells (MON 1-6) in the central Mediterranean during early phase of the last glaciation. These climatic oscillations are defined by intervals of thicker varves and high Ti-counts and coincide with episodes of forest depletion interpreted as Mediterranean stadial conditions (cold winter/dry summer). Our chronology, labelled as MON-2014, has been updated for the study interval by tephrochronology and repeated and more precise varve counts and is independent from ice-core and speleothem chronologies. The high-resolution Monticchio data then have been compared in detail with the Greenland ice-core d18O record (NorthGRIP) and the northern Alps speleothem d18Ocalcite data (NALPS). Based on visual inspection of major changes in the proxy data, MON 2-6 are suggested to correlate with Greenland stadials (GS) 25-20. MON 1 (Woillard event), the first and shortest cooling spell in the Mediterranean after a long phase of stable interglacial conditions, has no counterpart in the Greenland ice core, but coincides with the lowest isotope values at the end of the gradual decrease in d18Oice in NorthGRIP during the second half of the Greenland interstadial (GI) 25. MON 3 is the least pronounced cold spell and shows gradual transitions, whereas its NorthGRIP counterpart GS 24 is characterized by sharp changes in the isotope records. MON 2 and MON 4 are the longest most and pronounced oscillations in the MON sediments in good agreement with their counterparts identified in the ice and spelethem records. The length of MON 4 (correlating with GS 22) supports the duration of stadial proposed by the NALPS timescales and suggests ca 500 yr longer duration than calculated by the ice-core chronologies GICC05modelext and AICC2012. Absolute dating of the cold spells provided by the MON-2014 chronology shows good agreement among the MON-2014, the GICC05modelext and the NALPS timescales for the period between 112 and 100 ka. In contrast, the MON-2014 varve chronology dates the oscillations MON 4 to MON 6 (92-76 ka) ca. 3,500 years older than the most likely corresponding stadials GS 22 to GS 20 by the other chronologies.
Resumo:
The evolution of the northwest African hydrological balance throughout the Pleistocene epoch influenced the migration of prehistoric humans**1. The hydrological balance is also thought to be important to global teleconnection mechanisms during Dansgaard-Oeschger and Heinrich events**2. However, most high-resolution African climate records do not span the millennial-scale climate changes of the last glacial-interglacial cycle**1, 3, 4, 5, or lack an accurate chronology**6. Here, we use grain-size analyses of siliciclastic marine sediments from off the coast of Mauritania to reconstruct changes in northwest African humidity over the past 120,000 years. We compare this reconstruction to simulations of palaeo-humidity from a coupled atmosphere-ocean-vegetation model. These records are in good agreement, and indicate the reoccurrence of precession-forced humid periods during the last interglacial period similar to the Holocene African Humid Period. We suggest that millennial-scale arid events are associated with a reduction of the North Atlantic meridional overturning circulation and that millennial-scale humid events are linked to a regional increase of winter rainfall over the coastal regions of northwest Africa.