839 resultados para Provable security
Resumo:
The past several years have seen the surprising and rapid rise of Bitcoin and other “cryptocurrencies.” These are decentralized peer-to-peer networks that allow users to transmit money, tocompose financial instruments, and to enforce contracts between mutually distrusting peers, andthat show great promise as a foundation for financial infrastructure that is more robust, efficientand equitable than ours today. However, it is difficult to reason about the security of cryptocurrencies. Bitcoin is a complex system, comprising many intricate and subtly-interacting protocol layers. At each layer it features design innovations that (prior to our work) have not undergone any rigorous analysis. Compounding the challenge, Bitcoin is but one of hundreds of competing cryptocurrencies in an ecosystem that is constantly evolving. The goal of this thesis is to formally reason about the security of cryptocurrencies, reining in their complexity, and providing well-defined and justified statements of their guarantees. We provide a formal specification and construction for each layer of an abstract cryptocurrency protocol, and prove that our constructions satisfy their specifications. The contributions of this thesis are centered around two new abstractions: “scratch-off puzzles,” and the “blockchain functionality” model. Scratch-off puzzles are a generalization of the Bitcoin “mining” algorithm, its most iconic and novel design feature. We show how to provide secure upgrades to a cryptocurrency by instantiating the protocol with alternative puzzle schemes. We construct secure puzzles that address important and well-known challenges facing Bitcoin today, including wasted energy and dangerous coalitions. The blockchain functionality is a general-purpose model of a cryptocurrency rooted in the “Universal Composability” cryptography theory. We use this model to express a wide range of applications, including transparent “smart contracts” (like those featured in Bitcoin and Ethereum), and also privacy-preserving applications like sealed-bid auctions. We also construct a new protocol compiler, called Hawk, which translates user-provided specifications into privacy-preserving protocols based on zero-knowledge proofs.
Resumo:
In a distributed key distribution scheme, a set of servers helps a set of users in a group to securely obtain a common key. Security means that an adversary who corrupts some servers and some users has no information about the key of a noncorrupted group. In this work, we formalize the security analysis of one such scheme which was not considered in the original proposal. We prove the scheme is secure in the random oracle model, assuming that the Decisional Diffie-Hellman (DDH) problem is hard to solve. We also detail a possible modification of that scheme and the one in which allows us to prove the security of the schemes without assuming that a specific hash function behaves as a random oracle. As usual, this improvement in the security of the schemes is at the cost of an efficiency loss.
Resumo:
Three-party password-authenticated key exchange (3PAKE) protocols allow entities to negotiate a secret session key with the aid of a trusted server with whom they share a human-memorable password. Recently, Lou and Huang proposed a simple 3PAKE protocol based on elliptic curve cryptography, which is claimed to be secure and to provide superior efficiency when compared with similar-purpose solutions. In this paper, however, we show that the solution is vulnerable to key-compromise impersonation and offline password guessing attacks from system insiders or outsiders, which indicates that the empirical approach used to evaluate the scheme's security is flawed. These results highlight the need of employing provable security approaches when designing and analyzing PAKE schemes. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
Participatory Sensing combines the ubiquity of mobile phones with sensing capabilities of Wireless Sensor Networks. It targets pervasive collection of information, e.g., temperature, traffic conditions, or health-related data. As users produce measurements from their mobile devices, voluntary participation becomes essential. However, a number of privacy concerns -- due to the personal information conveyed by data reports -- hinder large-scale deployment of participatory sensing applications. Prior work on privacy protection, for participatory sensing, has often relayed on unrealistic assumptions and with no provably-secure guarantees. The goal of this project is to introduce PEPSI: a Privacy-Enhanced Participatory Sensing Infrastructure. We explore realistic architectural assumptions and a minimal set of (formal) privacy requirements, aiming at protecting privacy of both data producers and consumers. We design a solution that attains privacy guarantees with provable security at very low additional computational cost and almost no extra communication overhead.
Resumo:
Quantum Key Distribution is carving its place among the tools used to secure communications. While a difficult technology, it enjoys benefits that set it apart from the rest, the most prominent is its provable security based on the laws of physics. QKD requires not only the mastering of signals at the quantum level, but also a classical processing to extract a secret-key from them. This postprocessing has been customarily studied in terms of the efficiency, a figure of merit that offers a biased view of the performance of real devices. Here we argue that it is the throughput the significant magnitude in practical QKD, specially in the case of high speed devices, where the differences are more marked, and give some examples contrasting the usual postprocessing schemes with new ones from modern coding theory. A good understanding of its implications is very important for the design of modern QKD devices.
Resumo:
To describe the clinical history of a child with aggressive behavior and recurring death-theme speech, and report the experience of the team of authors, who proposed an alternative to medication through the establishment of a protection network and the inter-sector implementation of the circle of security concept. A 5-year-old child has a violent and aggressive behavior at the day-care. The child was diagnosed by the healthcare center with depressive disorder and behavioral disorder, and was medicated with sertraline and risperidone. Side effects were observed, and the medications were discontinued. Despite several actions, such as talks, teamwork, psychological and psychiatric follow-up, the child's behavior remained unchanged. A unique therapeutic project was developed by Universidade Estadual de Campinas' Medical School students in order to establish a connection between the entities responsible for the child's care (daycare center, healthcare center, and family). Thus, the team was able to develop a basic care protection network. The implementation of the inter-sector circle of security, as well as the communication and cooperation among the teams, produced very favorable results in this case. This initiative was shown to be a feasible and effective alternative to the use of medication for this child.
Resumo:
Power system real time security assessment is one of the fundamental modules of the electricity markets. Typically, when a contingency occurs, it is required that security assessment and enhancement module shall be ready for action within about 20 minutes’ time to meet the real time requirement. The recent California black out again highlighted the importance of system security. This paper proposed an approach for power system security assessment and enhancement based on the information provided from the pre-defined system parameter space. The proposed scheme opens up an efficient way for real time security assessment and enhancement in a competitive electricity market for single contingency case
Resumo:
Australia is an increasingly important ally for the United States. It is willing to be part of challenging global missions, and its strong economy and growing self-confi dence suggest a more prominent role in both global and regional affairs. Moreover, its government has worked hard to strengthen the link between Canberra and Washington. Political and strategic affi nities between the two countries have been refl ected in--and complemented by--practiced military interoperability, as the two allies have sustained a pattern of security cooperation in relation to East Timor, Afghanistan and Iraq in the last 4 years. This growing collaboration between the two countries suggests that a reinvention of the traditional bilateral security relationship is taking place. At the core of this process lies an agreement about the need for engaging in more proactive strategic behavior in the changing global security environment, and a mutual acceptance of looming military and technological interdependence. But this new alliance relationship is already testing the boundaries of bipartisan support for security policy within Australia. Issues of strategic doctrine, defense planning, and procurement are becoming topics of fi erce policy debate. Such discussion is likely to be sharpened in the years ahead as Australia’s security relationship with the United States settles into a new framework.
Resumo:
Unauthorized accesses to digital contents are serious threats to international security and informatics. We propose an offline oblivious data distribution framework that preserves the sender's security and the receiver's privacy using tamper-proof smart cards. This framework provides persistent content protections from digital piracy and promises private content consumption.