981 resultados para Proteus mirabilis in bivalves molluscan


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fecal contamination of raw seafood by indicators and opportunistic pathogenic microorganisms represents a public health concern. The objective of this study was to investigate the presence of enteric bacteria colonizing oysters collected from a Venezuelan touristic area. Oyster samples were collected at the northwestern coast of Venezuela and local salinity, pH, temperature, and dissolved oxygen of seawater were recorded. Total and fecal coliforms were measured for the assessment of the microbiological quality of water and oysters, using the Multiple Tube Fermentation technique. Analyses were made using cultures and 16S rRNA gene sequencing. Diverse enrichment and selective culture methods were used to isolate enteric bacteria. We obtained pure cultures of Gram-negative straight rods with fimbriae from Isognomon alatus and Crassostrea rhizophorae. Our results show that P. mirabilis was predominant under our culture conditions. We confirmed the identity of the cultures by biochemical tests, 16S rRNA gene sequencing, and data analysis. Other enterobacteria such as Escherichia coli, Morganella morganii and Klebsiella pneumoniae were also isolated from seawater and oysters. The presence of pathogenic bacteria in oysters could have serious epidemiological implications and a potential human health risk associated with consumption of raw seafood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION : Infections caused by Klebsiella pneumoniae carbapenemase (KPC)-producing isolates pose a major worldwide public health problem today. METHODS : A carbapenem-resistant Proteus mirabilis clinical isolate was investigated for plasmid profiles and the occurrence of β-lactamase genes. RESULTS : The isolate exhibited resistance to ertapenem and imipenem and was susceptible to meropenem, polymyxin, and tigecycline. Five plasmids were identified in this isolate. DNA sequencing analysis revealed the presence of bla KPC-2 and bla TEM-1 genes. An additional PCR using plasmid DNA confirmed that bla KPC-2 was present in one of these plasmids. Conclusions: We report the detection of bla KPC-2 in P. mirabilis in Brazil for the first time. This finding highlights the continuous transfer of bla KPC between bacterial genera, which presents a serious challenge to the prevention of infection by multidrug-resistant bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteus mirabilis must be considered a normal inhabitant of the intestine of hamsters. It is also found in the vaginal secretion of females of this animal, when in oestrus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inducible tetracycline resistance determinant isolated from Proteus mirabilis cloned into the plasmid pACYC177 was mutagenized by insertion of a mini-Mu-lac phage in order to define the regions in the cloned sequences encoding the structural and regulatory proteins. Three different types of mutants were obtained: one lost the resistance phenotype and became Lac+; another expressed the resistance at lower levels and constitutively; the third was still dependent on induction but showed a lower minimal inhibitory concentration. The mutant phenotypes and the locations of the insertions indicate that the determinant is composed of a repressor gene and a structural gene which are not transcribed divergently as are other known tetracycline determinants isolated from Gram-negative bacteria

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The opportunistic bacterium Proteus mirabilis secretes a metalloprotease, ZapA, considered to be one of its virulence factors due to its IgA-degrading activity. However, the substrate specificity of this enzyme has not yet been fully characterized. In the present study we used fluorescent peptides derived from bioactive peptides and the oxidized ß-chain of insulin to determine the enzyme specificity. The bradykinin- and dynorphin-derived peptides were cleaved at the single bonds Phe-Ser and Phe-Leu, with catalytic efficiencies of 291 and 13 mM/s, respectively. Besides confirming already published cleavage sites, a novel cleavage site was determined for the ß-chain of insulin (Val-Asn). Both the natural and the recombinant enzyme displayed the same broad specificity, demonstrated by the presence of hydrophobic, hydrophilic, charged and uncharged amino acid residues at the scissile bonds. Native IgA, however, was resistant to hydrolysis by ZapA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The opportunistic bacterium Proteus mirabilis secretes a metalloprotease, ZapA, considered to be one of its virulence factors due to its IgA-degrading activity. However, the substrate specificity of this enzyme has not yet been fully characterized. In the present study we used fluorescent peptides derived from bioactive peptides and the oxidized ß-chain of insulin to determine the enzyme specificity. The bradykinin- and dynorphin-derived peptides were cleaved at the single bonds Phe-Ser and Phe-Leu, with catalytic efficiencies of 291 and 13 mM/s, respectively. Besides confirming already published cleavage sites, a novel cleavage site was determined for the ß-chain of insulin (Val-Asn). Both the natural and the recombinant enzyme displayed the same broad specificity, demonstrated by the presence of hydrophobic, hydrophilic, charged and uncharged amino acid residues at the scissile bonds. Native IgA, however, was resistant to hydrolysis by ZapA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The indwelling urethral catheter has an important role for patients with urinary retention, bladder obstruction, neurological damage and other diseases. Urine contains minerals which precipitate in alkaline pH, crystallize and block the urological catheter. The crystallization of the ionic components of urine occurs in the presence of urease, an enzyme produced by Proteus mirabilis. This bacterium adheres to inanimate surfaces and forms biofilms. The aim of this study was to investigate the formation of crystalline biofilm on the luminal surface of siliconized latex catheters by means of scanning electron microscope, after channeling artificial urine infected with Proteus mirabilis. The experiment was performed in vitro using a dynamic flow system. The artificial urine compounds were salts of calcium, magnesium, phosphates, urea and egg albumin, and it was infected with Proteus mirabilis ATCC 25933. The urine flow was stopped after crystallization of the ionic components. Crystallization was observed after alkalinization of urine. Scanning electron microscopy showed the presence of crystals and morphologies typical of bacilli embedded in an amorphous mass on the internal lumen of the catheter. The present study showed that catheter encrustation may limit the use of long-term indwelling catheter. © SBEB - Sociedade Brasileira de Engenharia Biomédica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orchiepididymitis is the inflammation of both, testis and epididymis and may be caused by microbial agents such as Brucella ovis. Thus, the aim of the present report is to present a case of orchiepididymitis in a Lacaune ram with unilateral testicular enlargement. Ultrasonography of the testis revealed the presence of a circular hypoechogenic structure adjacent to the testicular parenchyma. Corynebacterium sp was isolated from the surgically removed testis. Two months after removal of the affected testis, the animal returned to the Veterinary Hospital due to an enlargement of the remaining testis. A new ultrasonographic exam revealed the presence of abscesses in the testicular parenchyma and periorchitis. After orchiectomy, Proteus mirabilis was isolated from the material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A clinical isolate of Proteus mirabilis containing R-plasmid RP1 (R+ cells), grown in both iron- and carbon- limited chemically defined media in mixed culture with plasmid-free (R- cells), did not disappear as expected, due to adherence of R+ cells to the wall of the chemostat vessel. Plasmid RP1 promoted adherence to glass and to medical prostheses. The hydrophobicity and surface charge of R+ cells were different from those of R- cells and both factors may contribute to the adherence of R+ cells to surfaces. The mode of cultivation of the cells, whether batch or continuous culture, were also found to affect the result. Antibodies raised against homologous cells increased the surface hydrophobicity of both R+ and R- cells and eliminated the differences between them. Results for surface hydrophobicity varied with the method used for measuring it. R+ cells were more sensitive than R- cells to tbe bacteridical action of normal serum and whole blood and to phagocytosis as measured by chemiluminescence. No clear differences were revealed in the protein antigens of R+ and R- cells by both SDS PAGE gels and immunoblots reacted with homologous antibodies. However, lectins revealed differences in the sugars exposed on the cell surfaces. Chemical analysis of R&43 and R- cells also revealed differences in the content of 2-keto-3-deoxy-D-manno-2-octulosonate, lipopolysaccharide and total fatty acids, when cells were grown in media containing added iron; however, no qualitative differences in the lipopolysaccharide were found. Removal of iron from the medium was found to have considerable effects on the chemical structure of R+ cells but not of R- ones. Adhesion to prostheses and to leucocytes is discussed in the light of the results and the clinical relevance outlined with respect to the initiation of infection and the association of virulence with antibiotic resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteus mirabilis forms dense crystalline biofilms on catheter surfaces that occlude urine flow, leading to serious clinical complications in long-term catheterized patients, but there are presently no truly effective approaches to control catheter blockage by this organism. This study evaluated the potential for bacteriophage therapy to control P. mirabilis infection and prevent catheter blockage. Representative in vitro models of the catheterized urinary tract, simulating a complete closed drainage system as used in clinical practice, were employed to evaluate the performance of phage therapy in preventing blockage. Models mimicking either an established infection or early colonization of the catheterized urinary tract were treated with a single dose of a 3-phage cocktail, and the impact on time taken for catheters to block, as well as levels of crystalline biofilm formation, was measured. In models of established infection, phage treatment significantly increased time taken for catheters to block (∼ 3-fold) compared to untreated controls. However, in models simulating early-stage infection, phage treatment eradicated P. mirabilis and prevented blockage entirely. Analysis of catheters from models of established infection 10 h after phage application demonstrated that phage significantly reduced crystalline biofilm formation but did not significantly reduce the level of planktonic cells in the residual bladder urine. Taken together, these results show that bacteriophage constitute a promising strategy for the prevention of catheter blockage but that methods to deliver phage in sufficient numbers and within a key therapeutic window (early infection) will also be important to the successful application of phage to this problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sociedade Polis Litoral Ria Formosa,Projects Quasus and Project Toxigest financed by PROMAR (2007-2013)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development, validation, comparison and evaluation of analytical methods for marine toxins rely on the availability of toxic material. Within the project JACUMAR PSP, our interest is mainly focused on autochthonous bivalve species with the toxic profile of Alexandrium minutum, since this is the principal species involved regionally in PSP outbreaks. Mussels and oysters were exposed during few days in the harbor of Vilanova i la Geltrú, to blooms reaching a maximum A. minutum concentration of 200,000 cells L-1 in 2008, and 40,000 and 800,000 cells L-1, in 2009. Mussels, oysters and clams were exposed to one bloom of 22,000 cells L-1 in the harbor of Cambrils in 2009. In all situations higher toxic levels analyzed by HPLC-FD with postcolumn oxidation were observed in mussels (i.e. 1,200-2,500 μg eq. STX kg-1) than in oysters (i.e. 60-800 μg eq. STX kg-1) exposed to the same bloom. Blooms with higher concentrations of A. minutum did not correspond to higher levels of PSP toxins in bivalves. These differences may be explained by differences in A. minutum population dynamics, toxin production or in the physiological state or behaviour of shellfish. These results confirm that mussels concentrate more PSP toxins from A. minutum than oysters and clams.