960 resultados para Protein kinase C


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of PLC and Pkc inhibitors on Aspergillus nidulans depend on the carbon source. PLC inhibitors Spm and C48/80 delayed the first nuclear division in cultures growing on glucose, but stimulated it in media supplemented with pectin. Less intense were these effects on the mutant transformed with PLC-A gene rupture (AP27). Neomycin also delayed the germination in cultures growing on glucose or pectin; however, on glucose, the nuclear division was inhibited whereas in pectin it was stimulated. These effects were minor in AP27. The effects of Ro-31-8425 and BIM (both Pkc inhibitors) were also opposite for cultures growing on glucose or pectin. On glucose cultures of both strains BIM delayed germination and the first nuclear division, whereas on pectin both parameters were stimulated. Opposite effects were also detected when the cultures were growing on glucose or pectin in the presence of Ro-31-8425.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the participation of the Na(v)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKC epsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(v)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(v)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(v)1.8 decreased the Na(v)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. once the persistent hypernociception had been abolished by dipyrone, but not by Na(v)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(v)1.8 mRNA up-regulation in the DRG. in addition, during the persistent hypernociceptive state, the PKA and PKC epsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKC epsilon inhibitors reduce the hypernociception as well as the Na(v)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(v)1.8 mRNA by PKA and PKC epsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine toxin bistratene A (BisA) potently induces cytostasis and differentiation in a variety of systems. Evidence that BisA is a selective activator of protein kinase C (PKC) delta implicates PKC delta signaling in the negative growth-regulatory effects of this agent. The current study further investigates the signaling pathways activated by BisA by comparing its effects with those of the PKC agonist phorbol 12-myristate 13-acetate (PMA) in the IEC-18 intestinal crypt cell line. Both BisA and PMA induced cell cycle arrest in these cells, albeit with different kinetics. While BisA produced sustained cell cycle arrest in G(o)/G(1) and G(2)/M, the effects of PMA were transient and involved mainly a G(o)/G(1), blockade. BisA also produced apoptosis in a proportion of the population, an effect not seen with PMA. Both agents induced membrane translocation/activation of PKC, with BisA translocating only PKC delta and PMA translocating PKC alpha, delta, and epsilon in these cells. Notably, while depletion of PKC alpha, delta, and epsilon abrogated the cell cycle-specific effects of PMA in IEC-18 cells, the absence of these PKC isozymes failed to inhibit BisA-induced G(o)/G(1), and G(2)/M arrest or apoptosis. The cell cycle inhibitory and apoptotic effects of BisA, therefore, appear to be PKC-independent in IEG-18 cells. On the other hand, BisA and PMA both promoted PKC-dependent activation of Erk 1 and 2 in this system. Thus, intestinal epithelial cells respond to BisA through activation of at least two signaling pathways: a PKC delta -dependent pathway, which leads to activation of mitogen-activated protein kinase and possibly cytostasis in the appropriate context, and a PKC-independent pathway, which induces both cell cycle arrest in G(o)/G(1) and G(2)/M and apoptosis through as yet unknown mechanisms. (C) 2001 Elsevier Science Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal and glial high-affinity transporters regulate extracellular glutamate concentration, thereby terminating synaptic transmission and preventing neuronal excitotoxicity. Glutamate transporter activity has been shown to be modulated by protein kinase C (PKC) in cell culture. This is the first study to demonstrate such modulation in situ, by following the fate of the non-metabolisable glutamate transporter substrate, D-aspartate. In the rat retina, pan-isoform PKC inhibition with chelerythrine suppressed glutamate uptake by GLAST (glutamate/aspartate transporter), the dominant excitatory amino acid transporter localized to the glial Muller cells. This effect was mimicked by rottlerin but not by Go6976, suggesting the involvement of the PKCdelta isoform, but not PKCalpha, beta or gamma. Western blotting and immunohistochemical labeling revealed that the suppression of glutamate transport was not due to a change in transporter expression. Inhibition of PKCdelta selectively suppressed GLAST but not neuronal glutamate transporter activity. These data suggest that the targeting of specific glutamate transporters with isoform-specific modulators of PKC activity may have significant implications for the understanding of neurodegenerative conditions arising from compromised glutamate homeostasis, e.g. glaucoma and amyotrophic lateral sclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous work we found that mezerein, a C kinase activator, as well as basic fibroblast growth factor (FGF-2) induce demyelination and partial oligodendrocyte dedifferentiation in highly differentiated aggregating brain cell cultures. Here we show that following protein kinase C activator-induced demyelination, effective remyelination occurs. We found that mezerein or FGF-2 caused a transient increase in DNA synthesis following a pronounced decrease of the myelin markers myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphohydrolase. Both oligodendrocytes and astrocytes were involved in this mitogenic response. Within 17 days after demyelination, myelin was restored to the level of the untreated controls. Transient mitotic activity was indispensable for remyelination. The present results suggest that myelinating oligodendrocytes retain the capacity to reenter the cell cycle, and that this plasticity is important for the regeneration of the oligodendrocyte lineage and remyelination. Although it cannot be excluded that a quiescent population of oligodendrocyte precursor cells was present in the aggregates and able to proliferate, differentiate and remyelinate, we could not find evidence supporting this view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon treated with the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) showed a dose-dependent, persistent stimulation of the enzymes choline acetyltransferase (ChAT), glutamic acid decarboxylase and glutamine synthetase. After elimination of the proliferating cells by treatment of the cultures with Ara-C (0.4 microM) only the cholinergic marker enzyme, ChAT, could be stimulated by tumor promoters. The non-promoting phorbol ester, 4 alpha-phorbol 12,13-didecanoate proved to be inactive in these cultures, whereas the potent non-phorbol tumor promoter, mezerein, produced an even greater stimulatory effect than PMA. Since PMA and mezerein are potent and specific activators of protein kinase C, the present results suggest a role for this second messenger in the development of cholinergic telencephalon neurons. Stimulation of ChAT required prolonged exposure (48 h) of the cultures to PMA and the responsiveness of the cholinergic neurons to the tumor promoters decreased with progressive cellular maturation. The cholinergic telencephalon neurons showed the same pattern of responsiveness for tumor promoters as for nerve growth factor (NGF). However, the combined treatment with NGF and either PMA or mezerein produced an additive stimulatory effect, suggesting somewhat different mechanisms of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon treated with the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) showed a marked, rapid, and sustained increase in the activity of the astrocyte-specific enzyme glutamine synthetase (GS). This effect was accompanied by a small increase in RNA synthesis and a progressive reduction in DNA synthesis. Only mitotically active cultures were responsive to PMA treatments. Since in aggregate cultures astrocytes are the preponderant cell type, both in number and mitotic activity, it can be concluded that PMA induces and/or enhances the terminal differentiation of astrocytes. The developmental expression of GS was also greatly stimulated by mezerein, a potent nonphorbol tumor promoter, but not by 4 alpha-phorbol 12,13-didecanoate, a nonpromoting phorbol ester. Since both tumor promoters, PMA and mezerein, are potent and specific activators of C-kinase, it is suggested that C-kinase plays a regulatory role in the growth and differentiation of normal astrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous study, the Schistosoma mansoni Rho1 protein was able to complement Rho1 null mutant Saccharomyces cerevisiae cells at restrictive temperatures and under osmotic stress (low calcium concentration) better than the human homologue (RhoA). It is known that under osmotic stress, the S. cerevisiae Rho1 triggers two distinct pathways: activation of the membrane 1,3-beta-glucan synthase enzymatic complex and activation of the protein kinase C1 signal transduction pathway, promoting the transcription of response genes. In the present work the SmRho1 protein and its mutants smrho1E97P, smrho1L101T, and smrho1E97P, L101T were used to try to clarify the basis for the differential complementation of Rho1 knockout yeast strain by the human and S. mansoni genes. Experiments of functional complementation in the presence of caffeine and in the presence of the osmotic regulator sorbitol were conducted. SmRho1 and its mutants showed a differential complementation of the yeast cells in the presence of caffeine, since smrho1E97P and smrho1E97P, L101T mutants showed a delay in the growth when compared to the yeast complemented with the wild type SmRho1. However, in the presence of sorbitol and caffeine the wild type SmRho1 and mutants showed a similar complementation phenotype, as they allowed yeast growth in all caffeine concentrations tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasticity of mature oligodendrocytes was studied in aggregating brain cell cultures at the period of maximal expression of myelin marker proteins. The protein kinase C (PKC)-activating tumor promoters mezerein and phorbol 12-myristate 13-acetate (PMA), but not the inactive phorbol ester analog 4alpha-PMA, caused a pronounced decrease of myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) activity. In contrast, myelin/oligodendrocyte protein (MOG) content was affected relatively little. Northern blot analyses showed a rapid reduction of MBP and PLP gene expression induced by mezerein, and both morphological and biochemical findings indicate a drastic loss of compact myelin. During the acute phase of demyelination, only a relatively small increase in cell death was perceptible by in situ end labeling and in situ nick translation. Basic fibroblast growth factor (bFGF) also reduced the levels of the oligodendroglial differentiation markers and enhanced the demyelinating effects of the tumor promoters. The present results suggest that PKC activation resulted in severe demyelination and partial loss of the oligodendrocyte-differentiated phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin resistance in obesity is partly due to diminished glucose transport in myocytes and adipocytes, but underlying mechanisms are uncertain. Insulin-stimulated glucose transport requires activation of phosphatidylinositol (PI) 3-kinase (3K), operating downstream of insulin receptor substrate-1. PI3K stimulates glucose transport through increases in PI-3,4,5-(PO(4))(3) (PIP(3)), which activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). However, previous studies suggest that activation of aPKC, but not PKB, is impaired in intact muscles and cultured myocytes of obese subjects. Presently, we examined insulin activation of glucose transport and signaling factors in cultured adipocytes derived from preadipocytes harvested during elective liposuction in lean and obese women. Relative to adipocytes of lean women, insulin-stimulated [(3)H]2-deoxyglucose uptake and activation of insulin receptor substrate-1/PI3K and aPKCs, but not PKB, were diminished in adipocytes of obese women. Additionally, the direct activation of aPKCs by PIP(3) in vitro was diminished in aPKCs isolated from adipocytes of obese women. Similar impairment in aPKC activation by PIP(3) was observed in cultured myocytes of obese glucose-intolerant subjects. These findings suggest the presence of defects in PI3K and aPKC activation that persist in cultured cells and limit insulin-stimulated glucose transport in adipocytes and myocytes of obese subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We elucidated the mechanisms of action of two n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in Jurkat T-cells. Both DHA and EPA were principally incorporated into phospholipids in the following order: phosphatidylcholine < phosphatidylethanolamine < phosphatidylinositol/phosphatidylserine. Furthermore, two isoforms of phospholipase A(2) (i.e., calcium-dependent and calcium-independent) were implicated in the release of DHA and EPA, respectively, during activation of these cells. The two fatty acids inhibited the phorbol 12-myristate 13-acetate (PMA)-induced plasma membrane translocation of protein kinase C (PKC)-alpha and -epsilon. The two n-3 PUFAs also inhibited the nuclear translocation of nuclear factor kappaB (NF-kappaB) and the transcription of the interleukin-2 (IL-2) gene in PMA-activated Jurkat T-cells. Together, these results demonstrate that DHA and EPA, being released by two isoforms of phospholipase A(2), modulate IL-2 gene expression by exerting their action on two PKC isoforms and NF-kappaB in Jurkat T-cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor-alpha (TNF) has been implicated in retinal ganglion cells (RGC) degeneration in glaucoma. Atypical protein kinase C (PKC) zeta is involved in cell protection against various stresses. The aim of this study was to investigate the potential proapoptotic effects of intravitreal injections of TNF with or without PKCzeta specific inhibitor on the rat retina. TNF was injected in the vitreous of rat eyes alone or in combination with specific PKCzeta inhibitor. PKCzeta and NF-kappaB were studied by immunohistochemistry and western-blotting analysis on retina, and apoptosis quantified by the TUNEL assay. While low basal PKCzeta was observed in the control eyes, TNF induced intense expression of PKCzeta mostly in bipolar cells processes. PKCzeta staining became nuclear when TNF was coinjected with PKCzeta inhibitor. TNF alone did not induce apoptosis in the retina. Coinjection of the PKCzeta-specific inhibitor and TNF, however, induced apoptosis in the inner nuclear and ganglion cell layers. The PKCzeta-specific inhibitor unmasks retinal cells to TNF cytotoxicity showing a link between the proapoptotic effects of TNF and the antiapoptotic PKCzeta signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catecholamines as well as phorbol esters can induce the phosphorylation and desensitization of the alpha1B-adrenergic receptor (alpha1BAR). In this study, phosphoamino acid analysis of the phosphorylated alpha1BAR revealed that both epinephrine- and phorbol ester-induced phosphorylation predominantly occurs at serine residues of the receptor. The findings obtained with receptor mutants in which portions of the C-tail were truncated or deleted indicated that a region of 21 amino acids (393-413) of the carboxyl terminus including seven serines contains the main phosphorylation sites involved in agonist- as well as phorbol ester-induced phosphorylation and desensitization of the alpha1BAR. To identify the serines invoved in agonist- versus phorbol ester-dependent regulation of the receptor, two different strategies were adopted, the seven serines were either substituted with alanine or reintroduced into a mutant lacking all of them. Our findings indicate that Ser394 and Ser400 were phosphorylated following phorbol ester-induced activation of protein kinase C, whereas Ser404, Ser408, and Ser410 were phosphorylated upon stimulation of the alpha1BAR with epinephrine. The observation that overexpression of G protein-coupled kinase 2 (GRK2) could increase agonist-induced phosphorylation of Ser404, Ser408, and Ser410, strongly suggests that these serines are the phosphorylation sites of the alpha1BAR for kinases of the GRK family. Phorbol ester-induced phosphorylation of the Ser394 and Ser400 as well as GRK2-mediated phosphorylation of the Ser404, Ser408, and Ser410, resulted in the desensitization of alpha1BAR-mediated inositol phosphate response. This study provides generalities about the biochemical mechanisms underlying homologous and heterologous desensitization of G protein-coupled receptors linked to the activation of phospholipase C.