997 resultados para Protein fibrillar aggregates
Resumo:
Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating chargeby reducing the come-up time (CUT) needed to reach a target temperatureand increase of the electric field applied (from 6 to 12 V cm1). Exposure of reactive free thiol groups involved in molecular unfolding of -lactoglobulin (-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm1. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.
Resumo:
The frequency distribution of aggregate size of the diffuse and florid-type prion protein (PrP) plaques was studied in various brain regions in cases of variant Creutzfeldt-Jakob disease (vCJD). The size distributions were unimodal and positively skewed and resembled those of β-amyloid (Aβ) deposits in Alzheimer's disease (AD) and Down's syndrome (DS). The frequency distributions of the PrP aggregates were log-normal in shape, but there were deviations from the expected number of plaques in specific size classes. More diffuse plaques were observed in the modal size class and fewer in the larger size classes than expected and more florid plaques were present in the larger size classes compared with the log-normal model. It was concluded that the growth of the PrP aggregates in vCJD does not strictly follow a log-normal model, diffuse plaques growing to within a more restricted size range and florid plaques to larger sizes than predicted. © Springer-Verlag 2005.
Resumo:
Lewy bodies and Lewy neurites, neuropathological hallmarks of several neurological diseases, are mainly made of filamentous assemblies of alpha-synuclein. However, other macromolecules including Tau, ubiquitin, glyceraldehyde-3-phosphate dehydrogenase, and glycosaminoglycans are routinely found associated with these amyloid deposits. Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that can form fibrillar aggregates in the presence of acidic membranes, but its role in Parkinson disease is still unknown. In this work, the ability of heparin to trigger the amyloid aggregation of this protein at physiological conditions of pH and temperature is demonstrated by infrared and fluorescence spectroscopy, dynamic light scattering, small angle x-ray scattering, circular dichroism, and fluorescence microscopy. Aggregation proceeds through the formation of short rod-like oligomers, which elongates in one dimension. Heparan sulfate was also capable of inducing glyceraldehyde-3-phosphate dehydrogenase aggregation, but chondroitin sulfates A, B, and C together with dextran sulfate had a negligible effect. Aided with molecular docking simulations, a putative binding site on the protein is proposed providing a rational explanation for the structural specificity of heparin and heparan sulfate. Finally, it is demonstrated that in vitro the early oligomers present in the glyceraldehyde-3-phosphate dehydrogenase fibrillation pathway promote alpha-synuclein aggregation. Taking into account the toxicity of alpha-synuclein prefibrillar species, the heparin-induced glyceraldehyde-3-phosphate dehydrogenase early oligomers might come in useful as a novel therapeutic strategy in Parkinson disease and other synucleinopathies.
Resumo:
The accumulation of microtubule-associated protein tau into fibrillar aggregates is the hallmark of Alzheimer’s disease and other neurodegenerative disorders, collectively referred to as tauopathies. Fibrils can propagate from one cell to the next and spread throughout the brain. However, a study shows that only small aggregates can be taken up by cultured neuronal cells. The mechanisms that lead to the breakage of fibrils into smaller fragments remain unknown. In yeast, the AAA+ chaperone HSP104 processes the reactivation of protein aggregates and is responsible for fragmentation of fibrils. This study focused on investigating the effects of molecular chaperones on tau fibrils and using HSP104 as a model system to test whether we can monitor fibril fracturing. The assays used to detect the chaperone’s actions on tau utilized acrylodan fluorescence, thioflavin T fluorescence, and sedimentation. Tau fibrils were either formed with a cofactor, heparin, to accelerate assembly or without a cofactor. In the process of investigating the effects of HSP104 on tau fibrils, this study established an assay to determine the effects of breakage on the seeding properties of tau fibrils. Our findings demonstrated that the sonication of tau fibrils produces smaller fragments (seeds) that accelerate the conversion of monomeric tau into fibrils. The use of this assay with HSP104 provided evidence that HSP104 inhibits the elongation of tau fibrils. Indeed, HSP104 inhibits the aggregation of soluble tau into aggregates. However, tau fibril breakage and dissociation were not observed with HSP104, either alone or in combination with co-chaperones (HSP70 and HSP40). Our findings provide insights into the seeding properties of tau fibrils, and suggest that fragmentation is a critical part of tau assembly. This knowledge should be valuable for understanding tau fibril aggregation and propagation in the brain, which is necessary to identify new treatments for neurodegenerative diseases.
Resumo:
The interactions of bovine serum albumin (BSA) with three ethylene oxide/butylene oxide (E/B) copolymers having different block lengths and varying molecular architectures is examined in this study in aqueous solutions. Dynamic light scattering (DLS) indicates the absence of BSA-polymer binding in micellar systems of copolymers with lengthy hydrophilic blocks. On the contrary, stable protein-polyrner aggregates were observed in the case of E18B10 block copolymer. Results from DLS and SAXS suggest the dissociation of E/B copolymer micelles in the presence of protein and the absorption of polymer chains to BSA surface. At high protein loadings, bound BSA adopts a more compact conformation in solution. The secondary structure of the protein remains essentially unaffected even at high polymer concentrations. Raman spectroscopy was used to give insight to the configurations of the bound molecules in concentrated solutions. In the vicinity of the critical gel concentration of E18B10 introduction of BSA can dramatically modify the phase diagram, inducing a gel-sol-gel transition. The overall picture of the interaction diagram of the E18B10-BSA reflects the shrinkage of the suspended particles due to destabilization of micelles induced by BSA and the gelator nature of the globular protein. SAXS and rheology were used to further characterize the structure and flow behavior of the polymer-protein hybrid gels and sols.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Protein aggregation became a widely accepted marker of many polyQ disorders, including Machado-Joseph disease (MJD), and is often used as readout for disease progression and development of therapeutic strategies. The lack of good platforms to rapidly quantify protein aggregates in a wide range of disease animal models prompted us to generate a novel image processing application that automatically identifies and quantifies the aggregates in a standardized and operator-independent manner. We propose here a novel image processing tool to quantify the protein aggregates in a Caenorhabditis elegans (C. elegans) model of MJD. Confocal mi-croscopy images were obtained from animals of different genetic conditions. The image processing application was developed using MeVisLab as a platform to pro-cess, analyse and visualize the images obtained from those animals. All segmenta-tion algorithms were based on intensity pixel levels.The quantification of area or numbers of aggregates per total body area, as well as the number of aggregates per animal were shown to be reliable and reproducible measures of protein aggrega-tion in C. elegans. The results obtained were consistent with the levels of aggrega-tion observed in the images. In conclusion, this novel imaging processing applica-tion allows the non-biased, reliable and high throughput quantification of protein aggregates in a C. elegans model of MJD, which may contribute to a significant improvement on the prognosis of treatment effectiveness for this group of disor-ders
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention
Resumo:
Several metals and metalloids profoundly affect biological systems, but their impact on the proteome and mechanisms of toxicity are not fully understood. Here, we demonstrate that arsenite causes protein aggregation in Saccharomyces cerevisiae. Various molecular chaperones were found to be associated with arsenite-induced aggregates indicating that this metalloid promotes protein misfolding. Using in vivo and in vitro assays, we show that proteins in the process of synthesis/folding are particularly sensitive to arsenite-induced aggregation, that arsenite interferes with protein folding by acting on unfolded polypeptides, and that arsenite directly inhibits chaperone activity. Thus, folding inhibition contributes to arsenite toxicity in two ways: by aggregate formation and by chaperone inhibition. Importantly, arsenite-induced protein aggregates can act as seeds committing other, labile proteins to misfold and aggregate. Our findings describe a novel mechanism of toxicity that may explain the suggested role of this metalloid in the etiology and pathogenesis of protein folding disorders associated with arsenic poisoning.
Resumo:
The D2-protein is a high molecular weight protein involved in interneuronal adhesion. The concentration of D2-protein was measured both in aggregates of fetal rat telencephalic cells cultured in a chemically defined medium and in developing forebrain. Both the concentration of the D2-protein and the degree of sialylation were changed in the cultures in parallel with the corresponding values obtained from postnatal forebrain. In the cultures the highest specific concentration of D2-protein was observed after 12 days in culture. This value was 2.7 times higher than the average value of adult rat forebrain. Antibodies to D2-protein have previously been shown to inhibit fasciculation of neuritic fibers extending from cultured explants of sympathetic ganglia. We investigated the effect of such antibodies on the differentiation of aggregating telencephalic cells. By adding surplus antibodies to the cultures from day 11 to day 16 we were able to decrease the specific concentration of D2-protein on the neurons by 53% measured at day 19. The decrease was not compensated fully even after further 10 days in the culture. Although the concentration of D2-protein was decreased during the period of synaptogenesis no change was found in the specific concentration of a marker of mature synapses, the D3-protein. Thus, in this culture system synaptogenesis could proceed to an unimpaired extent in the presence of a decreased concentration of a putatively involved adhesion molecule. However, the specific concentration of two markers of myelination, 2',3'-cyclic nucleotide 3'-phosphodiesterase and myelin basic protein, were both increased, suggesting an antibody-induced stimulation of myelination in the cultured aggregates.
Resumo:
Hsp70 is a central molecular chaperone that passively prevents protein aggregation and uses the energy of ATP hydrolysis to solubilize, translocate, and mediate the proper refolding of proteins in the cell. Yet, the molecular mechanism by which the active Hsp70 chaperone functions are achieved remains unclear. Here, we show that the bacterial Hsp70 (DnaK) can actively unfold misfolded structures in aggregated polypeptides, leading to gradual disaggregation. We found that the specific unfolding and disaggregation activities of individual DnaK molecules were optimal for large aggregates but dramatically decreased for small aggregates. The active unfolding of the smallest aggregates, leading to proper global refolding, required the cooperative action of several DnaK molecules per misfolded polypeptide. This finding suggests that the unique ATP-fueled locking/unlocking mechanism of the Hsp70 chaperones can recruit random chaperone motions to locally unfold misfolded structures and gradually disentangle stable aggregates into refoldable proteins.
Resumo:
Structurally and sequence-wise, the Hsp110s belong to a subfamily of the Hsp70 chaperones. Like the classical Hsp70s, members of the Hsp110 subfamily can bind misfolding polypeptides and hydrolyze ATP. However, they apparently act as a mere subordinate nucleotide exchange factors, regulating the ability of Hsp70 to hydrolyze ATP and convert stable protein aggregates into native proteins. Using stably misfolded and aggregated polypeptides as substrates in optimized in vitro chaperone assays, we show that the human cytosolic Hsp110s (HSPH1 and HSPH2) are bona fide chaperones on their own that collaborate with Hsp40 (DNAJA1 and DNAJB1) to hydrolyze ATP and unfold and thus convert stable misfolded polypeptides into natively refolded proteins. Moreover, equimolar Hsp70 (HSPA1A) and Hsp110 (HSPH1) formed a powerful molecular machinery that optimally reactivated stable luciferase aggregates in an ATP- and DNAJA1-dependent manner, in a disaggregation mechanism whereby the two paralogous chaperones alternatively activate the release of bound unfolded polypeptide substrates from one another, leading to native protein refolding.
Resumo:
The mitochondrial 70-kDa heat shock protein (mtHsp70), also known in humans as mortalin, is a central component of the mitochondrial protein import motor and plays a key role in the folding of matrix-localized mitochondrial proteins. MtHsp70 is assisted by a member of the 40-kDa heat shock protein co-chaperone family named Tid1 and a nucleotide exchange factor. Whereas, yeast mtHsp70 has been extensively studied in the context of protein import in the mitochondria, and the bacterial 70-kDa heat shock protein was recently shown to act as an ATP-fuelled unfolding enzyme capable of detoxifying stably misfolded polypeptides into harmless natively refolded proteins, little is known about the molecular functions of the human mortalin in protein homeostasis. Here, we developed novel and efficient purification protocols for mortalin and the two spliced versions of Tid1, Tid1-S, and Tid1-L and showed that mortalin can mediate the in vitro ATP-dependent reactivation of stable-preformed heat-denatured model aggregates, with the assistance of Mge1 and either Tid1-L or Tid1-S co-chaperones or yeast Mdj1. Thus, in addition of being a central component of the protein import machinery, human mortalin together with Tid1, may serve as a protein disaggregating machine which, for lack of Hsp100/ClpB disaggregating co-chaperones, may carry alone the scavenging of toxic protein aggregates in stressed, diseased, or aging human mitochondria.
Resumo:
Hsp70s are highly conserved ATPase molecular chaperones mediating the correct folding of de novo synthesized proteins, the translocation of proteins across membranes, the disassembly of some native protein oligomers, and the active unfolding and disassembly of stress-induced protein aggregates. Here, we bring thermodynamic arguments and biochemical evidences for a unifying mechanism named entropic pulling, based on entropy loss due to excluded-volume effects, by which Hsp70 molecules can convert the energy of ATP hydrolysis into a force capable of accelerating the local unfolding of various protein substrates and, thus, perform disparate cellular functions. By means of entropic pulling, individual Hsp70 molecules can accelerate unfolding and pulling of translocating polypeptides into mitochondria in the absence of a molecular fulcrum, thus settling former contradictions between the power-stroke and the Brownian ratchet models for Hsp70-mediated protein translocation across membranes. Moreover, in a very different context devoid of membrane and components of the import pore, the same physical principles apply to the forceful unfolding, solubilization, and assisted native refolding of stable protein aggregates by individual Hsp70 molecules, thus providing a mechanism for Hsp70-mediated protein disaggregation.