959 resultados para Protein Structure Comparison


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The database reported here is derived using the Combinatorial Extension (CE) algorithm which compares pairs of protein polypeptide chains and provides a list of structurally similar proteins along with their structure alignments. Using CE, structurestructure alignments can provide insights into biological function. When a protein of known function is shown to be structurally similar to a protein of unknown function, a relationship might be inferred; a relationship not necessarily detectable from sequence comparison alone. Establishing structurestructure relationships in this way is of great importance as we enter an era of structural genomics where there is a likelihood of an increasing number of structures with unknown functions being determined. Thus the CE database is an example of a useful tool in the annotation of protein structures of unknown function. Comparisons can be performed on the complete PDB or on a structurally representative subset of proteins. The source protein(s) can be from the PDB (updated monthly) or uploaded by the user. CE provides sequence alignments resulting from structural alignments and Cartesian coordinates for the aligned structures, which may be analyzed using the supplied Compare3D Java applet, or downloaded for further local analysis. Searches can be run from the CE web site, http://cl.sdsc.edu/ce.html, or the database and software downloaded from the site for local use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computing the similarity between two protein structures is a crucial task in molecular biology, and has been extensively investigated. Many protein structure comparison methods can be modeled as maximum weighted clique problems in specific k-partite graphs, referred here as alignment graphs. In this paper we present both a new integer programming formulation for solving such clique problems and a dedicated branch and bound algorithm for solving the maximum cardinality clique problem. Both approaches have been integrated in VAST, a software for aligning protein 3D structures largely used in the National Center for Biotechnology Information, an original clique solver which uses the well known Bron and Kerbosch algorithm (BK). Our computational results on real protein alignment instances show that our branch and bound algorithm is up to 116 times faster than BK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Protein structural alignment is one of the most fundamental and crucial areas of research in the domain of computational structural biology. Comparison of a protein structure with known structures helps to classify it as a new or belonging to a known group of proteins. This, in turn, is useful to determine the function of protein, its evolutionary relationship with other protein molecules and grasping principles underlying protein architecture and folding. Results: A large number of protein structure alignment methods are available. Each protein structure alignment tool has its own strengths andweaknesses that need to be highlighted.We compared and presented results of six most popular and publically available servers for protein structure comparison. These web-based servers were compared with the respect to functionality (features provided by these servers) and accuracy (how well the structural comparison is performed). The CATH was used as a reference. The results showed that overall CE was top performer. DALI and PhyreStorm showed similar results whereas PDBeFold showed the lowest performance. In case of few secondary structural elements, CE, DALI and PhyreStorm gave 100% success rate. Conclusion: Overall none of the structural alignment servers showed 100% success rate. Studies of overall performance, effect of mainly alpha and effect of mainly beta showed consistent performance. CE, DALI, FatCat and PhyreStorm showed more than 90% success rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MOTIVATION: The accurate prediction of the quality of 3D models is a key component of successful protein tertiary structure prediction methods. Currently, clustering or consensus based Model Quality Assessment Programs (MQAPs) are the most accurate methods for predicting 3D model quality; however they are often CPU intensive as they carry out multiple structural alignments in order to compare numerous models. In this study, we describe ModFOLDclustQ - a novel MQAP that compares 3D models of proteins without the need for CPU intensive structural alignments by utilising the Q measure for model comparisons. The ModFOLDclustQ method is benchmarked against the top established methods in terms of both accuracy and speed. In addition, the ModFOLDclustQ scores are combined with those from our older ModFOLDclust method to form a new method, ModFOLDclust2, that aims to provide increased prediction accuracy with negligible computational overhead. RESULTS: The ModFOLDclustQ method is competitive with leading clustering based MQAPs for the prediction of global model quality, yet it is up to 150 times faster than the previous version of the ModFOLDclust method at comparing models of small proteins (<60 residues) and over 5 times faster at comparing models of large proteins (>800 residues). Furthermore, a significant improvement in accuracy can be gained over the previous clustering based MQAPs by combining the scores from ModFOLDclustQ and ModFOLDclust to form the new ModFOLDclust2 method, with little impact on the overall time taken for each prediction. AVAILABILITY: The ModFOLDclustQ and ModFOLDclust2 methods are available to download from: http://www.reading.ac.uk/bioinf/downloads/ CONTACT: l.j.mcguffin@reading.ac.uk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vast majority of known proteins have not yet been experimentally characterized and little is known about their function. The design and implementation of computational tools can provide insight into the function of proteins based on their sequence, their structure, their evolutionary history and their association with other proteins. Knowledge of the three-dimensional (3D) structure of a protein can lead to a deep understanding of its mode of action and interaction, but currently the structures of <1% of sequences have been experimentally solved. For this reason, it became urgent to develop new methods that are able to computationally extract relevant information from protein sequence and structure. The starting point of my work has been the study of the properties of contacts between protein residues, since they constrain protein folding and characterize different protein structures. Prediction of residue contacts in proteins is an interesting problem whose solution may be useful in protein folding recognition and de novo design. The prediction of these contacts requires the study of the protein inter-residue distances related to the specific type of amino acid pair that are encoded in the so-called contact map. An interesting new way of analyzing those structures came out when network studies were introduced, with pivotal papers demonstrating that protein contact networks also exhibit small-world behavior. In order to highlight constraints for the prediction of protein contact maps and for applications in the field of protein structure prediction and/or reconstruction from experimentally determined contact maps, I studied to which extent the characteristic path length and clustering coefficient of the protein contacts network are values that reveal characteristic features of protein contact maps. Provided that residue contacts are known for a protein sequence, the major features of its 3D structure could be deduced by combining this knowledge with correctly predicted motifs of secondary structure. In the second part of my work I focused on a particular protein structural motif, the coiled-coil, known to mediate a variety of fundamental biological interactions. Coiled-coils are found in a variety of structural forms and in a wide range of proteins including, for example, small units such as leucine zippers that drive the dimerization of many transcription factors or more complex structures such as the family of viral proteins responsible for virus-host membrane fusion. The coiled-coil structural motif is estimated to account for 5-10% of the protein sequences in the various genomes. Given their biological importance, in my work I introduced a Hidden Markov Model (HMM) that exploits the evolutionary information derived from multiple sequence alignments, to predict coiled-coil regions and to discriminate coiled-coil sequences. The results indicate that the new HMM outperforms all the existing programs and can be adopted for the coiled-coil prediction and for large-scale genome annotation. Genome annotation is a key issue in modern computational biology, being the starting point towards the understanding of the complex processes involved in biological networks. The rapid growth in the number of protein sequences and structures available poses new fundamental problems that still deserve an interpretation. Nevertheless, these data are at the basis of the design of new strategies for tackling problems such as the prediction of protein structure and function. Experimental determination of the functions of all these proteins would be a hugely time-consuming and costly task and, in most instances, has not been carried out. As an example, currently, approximately only 20% of annotated proteins in the Homo sapiens genome have been experimentally characterized. A commonly adopted procedure for annotating protein sequences relies on the "inheritance through homology" based on the notion that similar sequences share similar functions and structures. This procedure consists in the assignment of sequences to a specific group of functionally related sequences which had been grouped through clustering techniques. The clustering procedure is based on suitable similarity rules, since predicting protein structure and function from sequence largely depends on the value of sequence identity. However, additional levels of complexity are due to multi-domain proteins, to proteins that share common domains but that do not necessarily share the same function, to the finding that different combinations of shared domains can lead to different biological roles. In the last part of this study I developed and validate a system that contributes to sequence annotation by taking advantage of a validated transfer through inheritance procedure of the molecular functions and of the structural templates. After a cross-genome comparison with the BLAST program, clusters were built on the basis of two stringent constraints on sequence identity and coverage of the alignment. The adopted measure explicity answers to the problem of multi-domain proteins annotation and allows a fine grain division of the whole set of proteomes used, that ensures cluster homogeneity in terms of sequence length. A high level of coverage of structure templates on the length of protein sequences within clusters ensures that multi-domain proteins when present can be templates for sequences of similar length. This annotation procedure includes the possibility of reliably transferring statistically validated functions and structures to sequences considering information available in the present data bases of molecular functions and structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present evidence that the size of an active site side chain may modulate the degree of hydrogen tunneling in an enzyme-catalyzed reaction. Primary and secondary kH/kT and kD/kT kinetic isotope effects have been measured for the oxidation of benzyl alcohol catalyzed by horse liver alcohol dehydrogenase at 25°C. As reported in earlier studies, the relationship between secondary kH/kT and kD/kT isotope effects provides a sensitive probe for deviations from classical behavior. In the present work, catalytic efficiency and the extent of hydrogen tunneling have been correlated for the alcohol dehydrogenase-catalyzed hydride transfer among a group of site-directed mutants at position 203. Val-203 interacts with the opposite face of the cofactor NAD+ from the alcohol substrate. The reduction in size of this residue is correlated with diminished tunneling and a two orders of magnitude decrease in catalytic efficiency. Comparison of the x-ray crystal structures of a ternary complex of a high-tunneling (Phe-93 → Trp) and a low-tunneling (Val-203 → Ala) mutant provides a structural basis for the observed effects, demonstrating an increase in the hydrogen transfer distance for the low-tunneling mutant. The Val-203 → Ala ternary complex crystal structure also shows a hyperclosed interdomain geometry relative to the wild-type and the Phe-93 → Trp mutant ternary complex structures. This demonstrates a flexibility in interdomain movement that could potentially narrow the distance between the donor and acceptor carbons in the native enzyme and may enhance the role of tunneling in the hydride transfer reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an approach for assessing the significance of sequence and structure comparisons by using nearly identical statistical formalisms for both sequence and structure. Doing so involves an all-vs.-all comparison of protein domains [taken here from the Structural Classification of Proteins (scop) database] and then fitting a simple distribution function to the observed scores. By using this distribution, we can attach a statistical significance to each comparison score in the form of a P value, the probability that a better score would occur by chance. As expected, we find that the scores for sequence matching follow an extreme-value distribution. The agreement, moreover, between the P values that we derive from this distribution and those reported by standard programs (e.g., blast and fasta validates our approach. Structure comparison scores also follow an extreme-value distribution when the statistics are expressed in terms of a structural alignment score (essentially the sum of reciprocated distances between aligned atoms minus gap penalties). We find that the traditional metric of structural similarity, the rms deviation in atom positions after fitting aligned atoms, follows a different distribution of scores and does not perform as well as the structural alignment score. Comparison of the sequence and structure statistics for pairs of proteins known to be related distantly shows that structural comparison is able to detect approximately twice as many distant relationships as sequence comparison at the same error rate. The comparison also indicates that there are very few pairs with significant similarity in terms of sequence but not structure whereas many pairs have significant similarity in terms of structure but not sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation: Within bioinformatics, the textual alignment of amino acid sequences has long dominated the determination of similarity between proteins, with all that implies for shared structure, function, and evolutionary descent. Despite the relative success of modern-day sequence alignment algorithms, so-called alignment-free approaches offer a complementary means of determining and expressing similarity, with potential benefits in certain key applications, such as regression analysis of protein structure-function studies, where alignment-base similarity has performed poorly. Results: Here, we offer a fresh, statistical physics-based perspective focusing on the question of alignment-free comparison, in the process adapting results from “first passage probability distribution” to summarize statistics of ensemble averaged amino acid propensity values. In this paper, we introduce and elaborate this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principal topic of this work is the application of data mining techniques, in particular of machine learning, to the discovery of knowledge in a protein database. In the first chapter a general background is presented. Namely, in section 1.1 we overview the methodology of a Data Mining project and its main algorithms. In section 1.2 an introduction to the proteins and its supporting file formats is outlined. This chapter is concluded with section 1.3 which defines that main problem we pretend to address with this work: determine if an amino acid is exposed or buried in a protein, in a discrete way (i.e.: not continuous), for five exposition levels: 2%, 10%, 20%, 25% and 30%. In the second chapter, following closely the CRISP-DM methodology, whole the process of construction the database that supported this work is presented. Namely, it is described the process of loading data from the Protein Data Bank, DSSP and SCOP. Then an initial data exploration is performed and a simple prediction model (baseline) of the relative solvent accessibility of an amino acid is introduced. It is also introduced the Data Mining Table Creator, a program developed to produce the data mining tables required for this problem. In the third chapter the results obtained are analyzed with statistical significance tests. Initially the several used classifiers (Neural Networks, C5.0, CART and Chaid) are compared and it is concluded that C5.0 is the most suitable for the problem at stake. It is also compared the influence of parameters like the amino acid information level, the amino acid window size and the SCOP class type in the accuracy of the predictive models. The fourth chapter starts with a brief revision of the literature about amino acid relative solvent accessibility. Then, we overview the main results achieved and finally discuss about possible future work. The fifth and last chapter consists of appendices. Appendix A has the schema of the database that supported this thesis. Appendix B has a set of tables with additional information. Appendix C describes the software provided in the DVD accompanying this thesis that allows the reconstruction of the present work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recombinant heat shock protein (18 kDa-hsp) from Mycobacterium leprae was studied as a T-epitope model for vaccine development. We present a structural analysis of the stability of recombinant 18 kDa-hsp during different processing steps. Circular dichroism and ELISA were used to monitor protein structure after thermal stress, lyophilization and chemical modification. We observed that the 18 kDa-hsp is extremely resistant to a wide range of temperatures (60% of activity is retained at 80ºC for 20 min). N-Acylation increased its ordered structure by 4% and decreased its ß-T1 structure by 2%. ELISA demonstrated that the native conformation of the 18 kDa-hsp was preserved after hydrophobic modification by acylation. The recombinant 18 kDa-hsp resists to a wide range of temperatures and chemical modifications without loss of its main characteristic, which is to be a source of T epitopes. This resistance is probably directly related to its lack of organization at the level of tertiary and secondary structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects) accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has long been known that amino acids are the building blocks for proteins and govern their folding into specific three-dimensional structures. However, the details of this process are still unknown and represent one of the main problems in structural bioinformatics, which is a highly active research area with the focus on the prediction of three-dimensional structure and its relationship to protein function. The protein structure prediction procedure encompasses several different steps from searches and analyses of sequences and structures, through sequence alignment to the creation of the structural model. Careful evaluation and analysis ultimately results in a hypothetical structure, which can be used to study biological phenomena in, for example, research at the molecular level, biotechnology and especially in drug discovery and development. In this thesis, the structures of five proteins were modeled with templatebased methods, which use proteins with known structures (templates) to model related or structurally similar proteins. The resulting models were an important asset for the interpretation and explanation of biological phenomena, such as amino acids and interaction networks that are essential for the function and/or ligand specificity of the studied proteins. The five proteins represent different case studies with their own challenges like varying template availability, which resulted in a different structure prediction process. This thesis presents the techniques and considerations, which should be taken into account in the modeling procedure to overcome limitations and produce a hypothetical and reliable three-dimensional structure. As each project shows, the reliability is highly dependent on the extensive incorporation of experimental data or known literature and, although experimental verification of in silico results is always desirable to increase the reliability, the presented projects show that also the experimental studies can greatly benefit from structural models. With the help of in silico studies, the experiments can be targeted and precisely designed, thereby saving both money and time. As the programs used in structural bioinformatics are constantly improved and the range of templates increases through structural genomics efforts, the mutual benefits between in silico and experimental studies become even more prominent. Hence, reliable models for protein three-dimensional structures achieved through careful planning and thoughtful executions are, and will continue to be, valuable and indispensable sources for structural information to be combined with functional data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of state-of-the-art protein structure prediction servers have been developed by researchers working in the Bioinformatics Unit at University College London. The popular PSIPRED server allows users to perform secondary structure prediction, transmembrane topology prediction and protein fold recognition. More recent servers include DISOPRED for the prediction of protein dynamic disorder and DomPred for domain boundary prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PSIPRED protein structure prediction server allows users to submit a protein sequence, perform a prediction of their choice and receive the results of the prediction both textually via e-mail and graphically via the web. The user may select one of three prediction methods to apply to their sequence: PSIPRED, a highly accurate secondary structure prediction method; MEMSAT 2, a new version of a widely used transmembrane topology prediction method; or GenTHREADER, a sequence profile based fold recognition method.

Relevância:

100.00% 100.00%

Publicador: