990 resultados para Propyl gallate synthesis
Resumo:
Marine Aspergillus awamori BTMFW032, recently reported by us, produce acidophilic tannase as extracellular enzyme. Here, we report the application of this enzyme for synthesis of propyl gallate by direct transesterification of tannic acid and in tea cream solubilisation besides the simultaneous production of gallic acid along with tannase under submerged fermentation by this fungus. This acidophilic tannase enabled synthesis of propyl gallate by direct transesterification of tannic acid using propanol as organic reaction media under low water conditions. The identity of the product was confirmed with thin layer chromatography and Fourier transform infrared spectroscopy. It was noted that 699 U/ml of enzyme could give 60% solubilisation of tea cream within 1 h. Enzyme production medium was optimized adopting Box–Behnken design for simultaneous synthesis of tannase and gallic acid. Process variables including tannic acid, sodium chloride, ferrous sulphate, dipotassium hydrogen phosphate, incubation period and agitation were recognized as the critical factors that influenced tannase and gallic acid production. The model obtained predicted 4,824.61 U/ml of tannase and 136.206 μg/ml gallic acid after 48 h of incubation, whereas optimized medium supported 5,085 U/ml tannase and 372.6 μg/ml of gallic acid production after 36 and 84 h of incubation, respectively, with a 15-fold increase in both enzyme and gallic acid production. Results indicated scope for utilization of this acidophilic tannase for transesterification of tannic acid into propyl gallate, tea cream solubilisation and simultaneous production of gallic acid along with tannase
Resumo:
The extracellular tannase from Emericela nidulans was immobilized on different ionic and covalent supports. The derivatives obtained using DEAE-Sepharose and Q-Sepharose were thermally stable from 60 to 75 °C, with a half life (t50) >24 h at 80 °C at pH 5. 0. The glyoxyl-agarose and amino-glyoxyl derivatives showed a thermal stability which was lower than that observed for ionic supports. However, when the stability to pH was considered, the derivatives obtained from covalent supports were more stable than those obtained from ionic supports. DEAE-Sepharose and Q-Sepharose derivatives as well as the free enzyme were stable in 30 and 50 % (v/v) 1-propanol. The CNBr-agarose derivative catalyzed complete tannic acid hydrolysis, whereas the Q-Sepharose derivative catalyzed the transesterification reaction to produce propyl gallate (88 % recovery), which is an important antioxidant. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Literature mentions propyl gallate (PG) as a non-toxic synthetic antioxidant that can be used as a food additive due to its high tolerance to heat. It is important to understand the thermal properties and to identify the decomposition products of this substance, since it has been reported to be thermally stable at temperatures as high as 300 °C. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry-photovisual (DSC-photovisual), coupled thermogravimetry-infrared spectroscopy (TG-FTIR) analyses and spectroscopic techniques were used to study the food additive PG. The TG-DTA curves, which were performed with the aid of DSC-photovisual, provided information concerning the thermal stability and decomposition profiles of the compound. From the TG-FTIR coupled techniques, it was possible to identify n-propanol as a possible volatile compound released during the thermal decomposition of the antioxidant. A complete spectroscopic characterization in the ultraviolet, visible, near and middle infrared regions was performed in order to understand the spectroscopic properties of PG.
Resumo:
本文报告了丝状真菌单宁酶发酵五倍子及有机溶剂中酶法合成没食子酸丙酯的研究。利用单宁和/或五倍子诱导丝状真菌产生单宁 酶的原理,借助二级发酵程序,对从天然源得到的75株菌进行了生物转化实验研究。选择出既能水解单宁或五倍子成没食子酸,又 能把没食子酸和丙醇合成没食子酸丙酯,而且生物催化活性都较高的1株菌,这株菌经初步鉴定为黑曲霉(Aspergillus niger No.17)。随后对它开展了产酶条件和参数优化实验,得出了最佳培养条件。立足于参数优化实验方案的基础上,经由液体培养发酵 制备单宁酶制剂,并把该酶通过化学手段共价结合到一种新型载体—聚乙烯醇和戊二醛反应生成的缩醛上,制备得到固定化单宁酶 。这种固定化生物催化剂在两种有机介质体系中都具有逆向催化合成没食子酸丙酯的能力。最后建立起来一条有效可行的微生物酶 法制备没食子酸的技术途径,没食子酸产率达到70%。对这种物质进行元素 分析:含C,49.45%;含H,3.63%。它的熔点为237℃~243 ℃,三种溶剂系统的TLC均只给出一个斑点。这些数据都与标准品一致。有机溶剂中酶法合成没食子酸丙酯的技术途径已经建立。 水溶性单宁酶在潜溶剂体系中也能催化上述酯化反应,反应混合物中的PG浓度为16.4mmol/L,制备薄层被用于分离反应混合物所含 的PG,这种产物被红外、质谱及三种溶剂系统的TLC等方法鉴定,确证为目标产物。在这一学位论文的实验研究过程中,还包括一 些生化分析方法的建立和应用,这些方法用于鉴定底物和产物及测定它们的浓度,其内容主要包括TLC定性/半定量分析、元素分析 、质谱、红外等手段的综合运用。本工作为开发我国特有的天然产物资源—五倍子的生物化工加工技术及非水相生物催化技术的开 发,提供了有用的基础数据资料,具有应用基础研究工作的重要性。In this thesis, the studies on the fermentation of Chinese gallotannin by filamentous fungi with tannase activity and enzymatic synthesis of propyl gallate(PG) in organic solvents were described through these biocatalysts. Based on the principles of induction enzyme, the tannase produced from filamentous fungi by adding tannic acid(TA) and/or Chinese gallotannin into media was investigated, and the screening experiments of bioconversion were done with 75 strains by means of a two-stage fermentation procedure. These strains were isolated with the enrichment culture technique from natural sources. Hence we selected one strain (Aspergillus niger No.17) that can not only catalyze the hydrolyses of TA and/or Chinese gallotannin into gallic acid(GA) in the liquid cultures, but also be used to synthesize PG from propanol and GA in the non-aqueous media. At the same time both of its biocatalytical activities were higher. This strain was calssified to be Aspergillus niger by the primary identification. Then optimum conditions for production of the tannase and its parameters were examined. In this way, one set of optimum culture conditions was selected. Making use of the optimum proposal, the tanase was prepared through a liquid fermentation procedure. The enzyme was convalently coupled to a new type of carrier which was made chemically from polyvinyl alcohol(PVA)and glutaraldehyde. The immobilized enzymes were able to synthesize PG reversely in two organic media. Finally, an effective enzymatic technique for production of GA was developed. The yield of GA products was up to 70%。Element analysis for this substance: calce: C, 49.42%; H, 3.56%; found: C, 49.45%, H, 3.63%. Its melting point was 237℃~ 243℃ and TLCs on three solvent systems gave only one spot respectively. These data were identical with theauthentic GA. The enzymatic synthesis of PG in organic solvents was extablished with reverse route of tannase catalytical hydrolysis. Aqueous enzyme perparation also catalyzed above esterification in a buffer system. The PG concentration in the reaction mixture was 16.4mmol/L. The reparative-scale TLC was used to isolate PG from the reaction mixture. This product separated was identified by IR, MS and TLC on three solvent systems. In this study of thesis, some biochemical analytical mehtods were developed and used to identify substrates and products, and to determinate their concentration. These methods, including TLC qualitative/half quantitative analysis, element analysis, MS, IR and so on, were useful, available and performable. This work provided basic data and information for developing the biochemical engineering and bio-processing of Chinese gallotannin-a special natural resource in China and the non-aqueous phase biocatalysis. Thus, this study possesses importance in the applied and basic research work.
Characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis
Resumo:
Tannases have attracted wider attention because of their biotechnological potential, especially enzymes from filamentous fungi and other microorganisms. However, the biodiversity of these microorganisms has been poorly explored, and few strains were identified for tannase production and characterization. This article describes the production, purification and characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis. High enzymatic levels were obtained in Khanna medium containing tannic acid up to 72 h at 30 °C under 100 rpm. The purified enzyme with 65% of carbohydrate content had an apparent native molecular mass of 218 kDa with subunits of 120 kDa and 93 kDa and was stable at 50 °C for 1 h. Optima of temperature and pH were 60 °C and 5.0-6.5, respectively. The enzyme was not affected significantly by most ions, detergents and organic solvents. While glucose did not affect the tannase activity, the addition of a high concentration of gallic acid did. The Km values were 1.7 mM (tannic acid), 14.3 mM (methyl-gallate) and 0.6 mM (propyl-gallate). The enzyme was able to catalyze the transesterification reaction to produce propyl-gallate. All biochemical properties suggest the biotechnological potential of the glucose- and solvent-tolerant tannase from A. phoenicis. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Lipophilic extracts from 16 species of seaweeds collected along the Qingdao coastline were screened and evaluated for their antioxidant activities (AA) using the beta-carotene-linoleate assay system. The diethyl ether soluble extracts of all selected seaweeds exhibited various degrees of antioxidative efficacy in each screen. The highest antioxidant capacities among the tested samples were observed for Rhodomela confervoides and Symphyocladia latiuscula and were comparable with that of the well-known antioxidant butylated hydroxytoluene and greater than that of propyl gallate. The lipophilic content of all 16 samples and the chemical composition of 4 selected seaweeds, R. confervoides and S. latiuscula, which had higher AA, Laminaria japonica, which had intermediate AA, and Plocamium telfairiae, which had lower AA, were analyzed by gas chromatography and gas chromatography-mass spectrometry, respectively. Fatty acids and alkanes were found. The present data indicated an increase in antioxidative property with increasing content of unsaturated fatty acid. The result of this study suggests that seaweeds can be considered as a potential source for the extraction of lipophilic antioxidants, which might be used as dietary supplements or in production in the food industry. This is the first report on the antioxidant activities of lipophilic extracts from seaweeds.
Resumo:
There is an enormous demand for chemical sensors in many areas and disciplines including chemistry, biology, clinical analysis, environmental science. Chemical sensing refers to the continuous monitoring of the presence of chemical species and is a rapidly developing field of science and technology. They are analytical devices which transform chemical information generating from a reaction of the analyte into an measurable signal. Due to their high selectivity, sensitivity, fast response and low cost, electrochemical and fluorescent sensors have attracted great interest among the researchers in various fields. Development of four electrochemical sensors and three fluorescent sensors for food additives and neurotransmitters are presented in the thesis. Based on the excellent properties of multi walled carbon nanotube (MWCNT), poly (L-cysteine) and gold nanoparticles (AuNP) four voltammetric sensors were developed for various food additives like propyl gallate, allura red and sunset yellow. Nanosized fluorescent probes including gold nanoclusters (AuNCs) and CdS quantum dots (QDs) were used for the fluorescent sensing of butylated hydroxyanisole, dopamine and norepinephrine. A total of seven sensors including four electrochemical sensors and three fluorescence sensors have been developed for food additives and neurotransmitters.
Resumo:
Lipid oxidation is certainly one of the most important alterations that affect both oils or fats and foods that contain them. It is responsible for the development of unpleasant taste and smell in foods, making them unsuitable for consuming. The use of antioxidants permits a longer useful life of these products. This work presents a bibliographic review of research carried out in order to evaluate the antioxidant activity of natural or synthetic substances used in the conservation of food lipid. Among such substances, the following antioxidants are highlighted: butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary butylhydroquinone (TBHQ), propyl gallate (PG), tocopherols, phenolic acids and isolated compounds from rosemary and oregano.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study is to evaluate the effi ciency of oregano, sage, moringa and rosemary as natural antioxidants and propyl gallate as artifi cial antioxidant used in “stuffed food” made with CMS of tilapia (minced fi sh) and stored frozen for 120 days. Protein, fat, moisture and ashes determination, microbiological analysis and sensory evaluations were conducted in the beginning and the end of storage period. TBARS, BNVT, pH and psychrotrophic microorganism count were determined periodically. The antioxidants interfered in pH (6.17 and 6.55) and TBARS values during 120 days under freezing (-18o C). The lowest TBA values were found for oregano (0.158 mg de MDA. kg-1) and sage (0.186 mg de MDA.kg-1). The stuffed food made with CMS of tilapia, without antioxidant, had the most oxidation, and sage and moringa were not good source of antioxidant. BNVT values (11.41 – 12.35 mgN.100g-1) were not altered. The lowest pH value was found for the product with sage (6.20), but similar to the moringa and propyl gallate, while oregano and rosemary showed the highest values (6.63 and 6.29), at 5 days of storage. Microbiological analyses were in accordance with Brazilian legislation. Sensory evaluation indicated that the panelists preferred the formulations made with oregano and propyl gallate. The results showed that it is feasible to elaborate stuffed food made with CMS of tilapia as an alternative for the fi shery´s consumption, and sage was the most effi cient natural antioxidant among those tested in this study.
Resumo:
The aim of this study was to determine the antioxidant activity of Moringa (Moringa oleifera Lam.) leaves flour in beef burger during storage for 120 days. Six hamburger formulations were processed: one control (without the use of additives), four with addition of Moringa leaves flour (0.10, 0.15, 0.20, and 0.25 g/100 g aggregate), and one with addition of synthetic antioxidant Propyl Gallate (0.01 g/100 g aggregate). The products were analyzed for their chemical composition with determinations of moisture, protein, dietary fiber, lipids, ash, carbohydrate, and caloric value after preparation. Microbiological and acceptance testing were performed at the beginning and after 120 days of storage. Determination of pH, instrumental color and lipid oxidation (TBARS) were performed at 1, 30, 60, 90 and 120 days of storage. All samples showed physical-chemical and microbiological tests in accordance with the Brazilian legislation. pH measurements were between 5.48 and 5.90; however, the intensity of red has changed according to the treatments and storage periods. The addition of Moringa leaves flour had no antioxidant effect on burgers, but its inclusion not only contributed to the improvement of nutritional quality, but also did not harm product acceptance.
Resumo:
The processing of meats at the factory level can trigger the onset of lipid oxidation, which can lead to meat quality deterioration. Warmed over flavor is an off-flavor, which is associated with oxidative deterioration in meat. To avoid or delay the auto-oxidation process in meat products, synthetic and natural antioxidants have been successfully used. Grape (Vitis Vinifera) is of special interest due to its high content of phenolic compounds. Grape seed extract sold commercially as a dietary supplement, has the potential to reduce lipid oxidation and WOF in cooked ground beef when added at 1%. The objective of study 1 was to compare the antioxidant activity of natural antioxidants including grape seed extract and some herbs belonging to the Lamiaciae family: rosemary (Rosmarinus Officinalis), sage (Salvia Officinalis) and oregano (Origanum Vulgare) with commercial synthetic antioxidants like BHT, BHA, propyl gallate and ascorbic acid using the ORAC assay. All sample solutions were prepared to contain 1.8 gm sample/10 ml solvent. The highest antioxidant activity was observed for the grape seed extract sample (359.75 µM TE), while the lowest was observed for BHA, propyl gallate and rosemary also showed higher antioxidant potential with ORAC values above 300 μmol TE/g. ORAC values obtained for ascorbic acid and Sage were between 250-300μ mol TE/g while lowest values were obtained for Butylated Hydroxytoluene (28.50 µM TE). Based on the high ORAC values obtained for grape seed extract, we can conclude that byproducts of the wine/grape industry have antioxidant potential comparable to or better than those present in synthetic counterparts. The objective of study 2 was to compare three levels of grape seed extract (GSE) to commonly used antioxidants in a pre-cooked, frozen, stored beef and pork sausage model system. Antioxidants added for comparison with control included grape seed extract (100, 300, 500 ppm), ascorbic acid (AA, 100 ppm of fat) and propyl gallate (PG, 100 ppm of fat). Product was formed into rolls, frozen, sliced into patties, cooked on a flat griddle to 70C, overwrapped in PVC, and then frozen at –18C for 4 months. GSE- and PG-containing samples retained their fresh cooked beef odor and flavor longer (p<0.05) than controls during storage. Rancid odor and flavor scores of GSE-containing samples were lower (p<0.05) than those of controls after 4 months of storage. The L* value of all samples increased (p<0.05) during storage. Thiobarbituric acid reactive substances (TBARS) of the control and AA-containing samples increased (p<0.05); those of GSE-containing samples did not change significantly (p>0.05) over the storage period.