998 resultados para Proprioceptive Control
Resumo:
It has long been supposed that the interference observed in certain patterns of coordination is mediated, at least in part, by peripheral afference from the moving limbs. We manipulated the level of afferent input, arising from movement of the opposite limb, during the acquisition of a complex coordination task. Participants learned to generate flexion and extension movements of the right wrist, of 75degrees amplitude, that were a quarter cycle out of phase with a 1-Hz sinusoidal visual reference signal. On separate trials, the left wrist either was at rest, or was moved passively by a torque motor through 50degrees, 75degrees or 100degrees, in synchrony with the reference signal. Five acquisition sessions were conducted on successive days. A retention session was conducted I week later. Performance was initially superior when the opposite limb was moved passively than when it was static. The amplitude and frequency of active movement were lower in the static condition than in the driven conditions and the variation in the relative phase relation across trials was greater than in the driven conditions. In addition, the variability of amplitude, frequency and the relative phase relation during each trial was greater when the opposite limb was static than when driven. Similar effects were expressed in electromyograms. The most marked and consistent differences in the accuracy and consistency of performance (defined in terms of relative phase) were between the static condition and the condition in which the left wrist was moved through 50degrees. These outcomes were exhibited most prominently during initial exposure to the task. Increases in task performance during the acquisition period, as assessed by a number of kinematic variables, were generally well described by power functions. In addition, the recruitment of extensor carpi radialis (ECR), and the degree of co-contraction of flexor carpi radialis and ECR, decreased during acquisition. Our results indicate that, in an appropriate task context, afferent feedback from the opposite limb, even when out of phase with the focal movement, may have a positive influence upon the stability of coordination.
Resumo:
Reaching and grasping an object is an action that can be performed in light, under visual guidance, as well as in darkness, under proprioceptive control only. Area V6A is a visuomotor area involved in the control of reaching movements. V6A, besides neurons activated by the execution of reaching movements, shows passive somatosensory and visual responses. This suggests fro V6A a multimodal capability of integrating sensory and motor-related information, We wanted to know whether this integration occurrs in reaching movements and in the present study we tested whether the visual feedback influenced the reaching activity of V6A neurons. In order to better address this question, we wanted to interpret the neural data in the light of the kinematic of reaching performance. We used an experimental paradigm that could examine V6A responses in two different visual backgrounds, light and dark. In these conditions, the monkey performed an istructed-delay reaching task moving the hand towards different target positions located in the peripersonal space. During the execution of reaching task, the visual feedback is processed in a variety of patterns of modulation, sometimes not expected. In fact, having already demonstrated in V6A reach-related discharges in absence of visual feedback, we expected two types of neural modulation: 1) the addition of light in the environment enhanced reach-related discharges recorded in the dark; 2) the light left the neural response unmodified. Unexpectedly, the results show a complex pattern of modulation that argues against a simple additive interaction between visual and motor-related signals.
Resumo:
Personality differences based on fine motor precision performance were studied in early stage Parkinson's patients and an age-matched control group under two different test conditions: proprioceptive + visual information and proprioceptive information alone. A comparative data analysis for deviations of three measured movement types (transversal, frontal and sagittal) was done for both hands (dominant and non-dominant) with relation to personality dimensions. There were found significant differences between the two groups in decision making dimension and emotionality. After splitting the data for gender subgroups, some significant differences were found for men but not for women. The differences in fine motor task performance varied, being better in some directions for the Parkinson"s patients and worse in others. The findings may suggest that medication has both positive and negative effects on motor performance and provoke personality changes, being more pronounced in men.
Resumo:
Single Limb Stance under visual and proprioceptive disturbances is largely used in clinical settings in order to improve balance in a wide range of functional disabilities. However, the proper role of vision and proprioception in SLS is not completely understood. The objectives of this study were to test the hypotheses that when ankle proprioception is perturbed, the role of vision in postural control increases according to the difficulty of the standing task. And to test the effect of vision during postural adaptation after withdrawal of the somesthetic perturbation during double and single limb stance. Eleven males were submitted to double (DLS) and single limb (SLS) stances under conditions of normal or reduced vision, both with normal and perturbed proprioception. Center of pressure parameters were analyzed across conditions. Vision had a main effect in SLS, whereas proprioception perturbation showed effects only during DLS. Baseline stability was promptly achieved independently of visual input after proprioception reintegration. In conclusion, the role of vision increases in SLS. After proprioception reintegration, vision does not affect postural recovery. Balance training programs must take that into account. © 2011 Elsevier Ltd.
Resumo:
A medida que se incrementa la energía de los aceleradores de partículas o iones pesados como el CERN o GSI, de los reactores de fusión como JET o ITER, u otros experimentos científicos, se va haciendo cada vez más imprescindible el uso de técnicas de manipulación remota para la interacción con el entorno sujeto a la radiación. Hasta ahora la tasa de dosis radioactiva en el CERN podía tomar valores cercanos a algunos mSv para tiempos de enfriamiento de horas, que permitían la intervención humana para tareas de mantenimiento. Durante los primeros ensayos con plasma en JET, se alcanzaban valores cercanos a los 200 μSv después de un tiempo de enfriamiento de 4 meses y ya se hacía extensivo el uso de técnicas de manipulación remota. Hay una clara tendencia al incremento de los niveles de radioactividad en el futuro en este tipo de instalaciones. Un claro ejemplo es ITER, donde se esperan valores de 450 Sv/h en el centro del toroide a los 11 días de enfriamiento o los nuevos niveles energéticos del CERN que harán necesario una apuesta por niveles de mantenimiento remotos. En estas circunstancias se enmarca esta tesis, que estudia un sistema de control bilateral basado en fuerza-posición, tratando de evitar el uso de sensores de fuerza/par, cuyo contenido electrónico los hace especialmente sensitivos en estos ambientes. El contenido de este trabajo se centra en la teleoperación de robots industriales, que debido a su reconocida solvencia y facilidad para ser adaptados a estos entornos, unido al bajo coste y alta disponibilidad, les convierte en una alternativa interesante para tareas de manipulación remota frente a costosas soluciones a medida. En primer lugar se considera el problema cinemático de teleoperación maestro-esclavo de cinemática disimilar y se desarrolla un método general para la solución del problema en el que se incluye el uso de fuerzas asistivas para guiar al operador. A continuación se explican con detalle los experimentos realizados con un robot ABB y que muestran las dificultades encontradas y recomendaciones para solventarlas. Se concluye el estudio cinemático con un método para el encaje de espacios de trabajo entre maestro y esclavo disimilares. Posteriormente se mira hacia la dinámica, estudiándose el modelado de robots con vistas a obtener un método que permita estimar las fuerzas externas que actúan sobre los mismos. Durante la caracterización del modelo dinámico, se realizan varios ensayos para tratar de encontrar un compromiso entre complejidad de cálculo y error de estimación. También se dan las claves para modelar y caracterizar robots con estructura en forma de paralelogramo y se presenta la arquitectura de control deseada. Una vez obtenido el modelo completo del esclavo, se investigan diferentes alternativas que permitan una estimación de fuerzas externas en tiempo real, minimizando las derivadas de la posición para minimizar el ruido. Se comienza utilizando observadores clásicos del estado para ir evolucionando hasta llegar al desarrollo de un observador de tipo Luenberger-Sliding cuya implementación es relativamente sencilla y sus resultados contundentes. También se analiza el uso del observador propuesto durante un control bilateral simulado en el que se compara la realimentación de fuerzas obtenida con las técnicas clásicas basadas en error de posición frente a un control basado en fuerza-posición donde la fuerza es estimada y no medida. Se comprueba como la solución propuesta da resultados comparables con las arquitecturas clásicas y sin embargo introduce una alternativa para la teleoperación de robots industriales cuya teleoperación en entornos radioactivos sería imposible de otra manera. Finalmente se analizan los problemas derivados de la aplicación práctica de la teleoperación en los escenarios mencionados anteriormente. Debido a las condiciones prohibitivas para todo equipo electrónico, los sistemas de control se deben colocar a gran distancia de los manipuladores, dando lugar a longitudes de cable de centenares de metros. En estas condiciones se crean sobretensiones en controladores basados en PWM que pueden ser destructivas para el sistema formado por control, cableado y actuador, y por tanto, han de ser eliminadas. En este trabajo se propone una solución basada en un filtro LC comercial y se prueba de forma extensiva que su inclusión no produce efectos negativos sobre el control del actuador. ABSTRACT As the energy on the particle accelerators or heavy ion accelerators such as CERN or GSI, fusion reactors such as JET or ITER, or other scientific experiments is increased, it is becoming increasingly necessary to use remote handling techniques to interact with the remote and radioactive environment. So far, the dose rate at CERN could present values near several mSv for cooling times on the range of hours, which allowed human intervention for maintenance tasks. At JET, they measured values close to 200 μSv after a cooling time of 4 months and since then, the remote handling techniques became usual. There is a clear tendency to increase the radiation levels in the future. A clear example is ITER, where values of 450 Sv/h are expected in the centre of the torus after 11 days of cooling. Also, the new energetic levels of CERN are expected to lead to a more advanced remote handling means. In these circumstances this thesis is framed, studying a bilateral control system based on force-position, trying to avoid the use of force/torque sensors, whose electronic content makes them very sensitive in these environments. The contents of this work are focused on teleoperating industrial robots, which due its well-known reliability, easiness to be adapted to these environments, cost-effectiveness and high availability, are considered as an interesting alternative to expensive custom-made solutions for remote handling tasks. Firstly, the kinematic problem of teloperating master and slave with dissimilar kinematics is analysed and a new general approach for solving this issue is presented. The solution includes using assistive forces in order to guide the human operator. Coming up next, I explain with detail the experiments accomplished with an ABB robot that show the difficulties encountered and the proposed solutions. This section is concluded with a method to match the master’s and slave’s workspaces when they present dissimilar kinematics. Later on, the research studies the dynamics, with special focus on robot modelling with the purpose of obtaining a method that allows to estimate external forces acting on them. During the characterisation of the model’s parameters, a set of tests are performed in order to get to a compromise between computational complexity and estimation error. Key points for modelling and characterising robots with a parallelogram structure are also given, and the desired control architecture is presented. Once a complete model of the slave is obtained, different alternatives for external force estimation are review to be able to predict forces in real time, minimizing the position differentiation to minimize the estimation noise. The research starts by implementing classic state observers and then it evolves towards the use of Luenberger- Sliding observers whose implementation is relatively easy and the results are convincing. I also analyse the use of proposed observer during a simulated bilateral control on which the force feedback obtained with the classic techniques based on the position error is compared versus a control architecture based on force-position, where the force is estimated instead of measured. I t is checked how the proposed solution gives results comparable with the classical techniques and however introduces an alternative method for teleoperating industrial robots whose teleoperation in radioactive environments would have been impossible in a different way. Finally, the problems originated by the practical application of teleoperation in the before mentioned scenarios are analysed. Due the prohibitive conditions for every electronic equipment, the control systems should be placed far from the manipulators. This provokes that the power cables that fed the slaves devices can present lengths of hundreds of meters. In these circumstances, overvoltage waves are developed when implementing drives based on PWM technique. The occurrence of overvoltage is very dangerous for the system composed by drive, wiring and actuator, and has to be eliminated. During this work, a solution based on commercial LC filters is proposed and it is extensively proved that its inclusion does not introduce adverse effects into the actuator’s control.
Resumo:
Study design: Cross-sectional study. Objectives: To assess the importance of proprioceptive and vision information on different types of wheelchair seats with regard to postural control in paraplegic individuals during static posture. Setting: Centre of Rehabilitation at the University Hospital/FMRP-USP and Rehabilitation Outpatient Clinic at University Hospital/UNICAMP, Brazil. Methods: This study involved 11 individuals with paraplegia. All individuals were submitted to an evaluation of static balance with their eyes open and closed in three different types of seats: wheelchair seat, foam seat and gel seat. Balance evaluation was performed by using the Polhemus system, in which body displacements and anteroposterior and mediolateral speeds were assessed in a static seated position in the different types of seats. Data were analyzed using analysis of variance. The differences were considered at P<0.05. Results: No statistical differences were found between the three types of seats in terms of displacements and anteroposterior and mediolateral speeds, or between seats with individuals keeping their eyes open or closed (P>0.05). However, it was observed that body displacements were more prominent toward an anteroposterior than a mediolateral direction. Conclusion: This study suggests that individuals with paraplegia tend to exhibit a more anteroposterior body displacement than a mediolateral one, with no significant differences between the types of seats in both situations of eyes open and closed. Spinal Cord (2010) 48, 825-827; doi:10.1038/sc.2010.30; published online 30 March 2010
Resumo:
The present study examined a wrist extension-to-flexion contraction pattern that was theorized to result in proprioceptive neuromuscular facilitation. However, the “reversal of antagonists” contraction pattern may have, alternatively, interfered with motor learning-related increases in strength. Participants (N=24) were matched on predicted strength and randomly assigned to either the control or experimental group. Training occurred during three test sessions within a one-week period. Retention and transfer (crossed-condition) tests were administered during a fourth test session two- weeks later. Both groups exhibited comparable increases in strength (20.2%) and decreases in muscle coactivation (35.2%), which were retained and transferred. Decreases in error and variability of the torque traces were associated with parallel decreases in variability of muscle activity. The reversal of antagonists technique did not interfere with motor learning-related increases in strength and decreases in variability. However, the more complex contraction pattern failed to result in proprioceptive neuromuscular facilitation of strength.
Resumo:
The goal of this research is to develop the prototype of a tactile sensing platform for anthropomorphic manipulation research. We investigate this problem through the fabrication and simple control of a planar 2-DOF robotic finger inspired by anatomic consistency, self-containment, and adaptability. The robot is equipped with a tactile sensor array based on optical transducer technology whereby localized changes in light intensity within an illuminated foam substrate correspond to the distribution and magnitude of forces applied to the sensor surface plane. The integration of tactile perception is a key component in realizing robotic systems which organically interact with the world. Such natural behavior is characterized by compliant performance that can initiate internal, and respond to external, force application in a dynamic environment. However, most of the current manipulators that support some form of haptic feedback either solely derive proprioceptive sensation or only limit tactile sensors to the mechanical fingertips. These constraints are due to the technological challenges involved in high resolution, multi-point tactile perception. In this work, however, we take the opposite approach, emphasizing the role of full-finger tactile feedback in the refinement of manual capabilities. To this end, we propose and implement a control framework for sensorimotor coordination analogous to infant-level grasping and fixturing reflexes. This thesis details the mechanisms used to achieve these sensory, actuation, and control objectives, along with the design philosophies and biological influences behind them. The results of behavioral experiments with a simple tactilely-modulated control scheme are also described. The hope is to integrate the modular finger into an %engineered analog of the human hand with a complete haptic system.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Introduction: The proprioceptive neuromuscular facilitation technique (PNF) has been proven to be efficient, since it was found higher gain of joint range-of-motion compared to the classic stretching. This study aimed to perform a comparison between the muscular stretching techniques and the PNF hold-relax on the internal and external sagittal/diagonal plane.Method: Randomly divided in 3 groups by a drawing, 30 healthy male individuals have undergone the test. In group I the hold-relax technique was utilized on the sagittal plane, grupo II receveid hold-relax on the internal and external diagonals, and group III, on which an evaluation was performed, worked as control. All the groups went through tests on the first, fifth and fifteenth day after the application of the different approaches. In this evaluation it was used a Flexis (R) Fleximeter.Result: Group II (diagonal) obtained statistically significant gain of 13.99% in the immediate post-test and post test later obtained a loss of 4.81%, group I (sagittal) showed no statistical difference as the group III (control).Conclusion: We conclude that the technique of PNF in the diagonal plane is effective in the flexibility of the hamstring muscles.
Resumo:
Objective: To assess sensory deficits and their effects on proprioceptive and motor function in patients who had undergone unilateral anterior cruciate ligament (ACL) reconstruction.Design: Four evaluations were conducted: (1) joint position perception of the knee for predetermined angles (0degrees, 15degrees, 30degrees, 45degrees, 60degrees); (2) threshold for detection of passive knee motion at 0degrees, 15degrees, 30degrees, 45degrees, and 60degrees moving into flexion and at 15degrees, 30degrees, 45degrees, and 60degrees moving into extension; (3) latency onset of hamstring muscles; and (4) postural control during upright double- and single-leg stance.Setting: Movement laboratory in Brazil.Participants: Ten participants who had surgical reconstruction of the ACL (reconstructed group) and 10 participants without knee injury (control group).Interventions: Not applicable.Main Outcome Measures: Absolute error, angular displacement, hamstring muscles latency, and mean sway amplitude.Results: Individuals with a reconstructed knee showed decreased joint position perception, a higher threshold for detection of passive knee motion, longer latency of hamstring muscles, and decreased performance in postural control.Conclusions: After lesion and ACL reconstruction, sensory and motor behavior changes were still observed. This may be because of the lack of proprioceptive information resulting from the ACL lesion and/or substitution of ACL by the graft. (C) 2003 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation.
Resumo:
Study Design. Quiet stance on supporting bases with different lengths and with different visual inputs were tested in 24 study participants with chronic low back pain (LBP) and 24 matched control subjects. Objectives. To evaluate postural adjustment strategies and visual dependence associated with LBP. Summary of Background Data. Various studies have identified balance impairments in patients with chronic LBP, with many possible causes suggested. Recent evidence indicates that study participants with LBP have impaired trunk muscle control, which may compromise the control of trunk and hip movement during postural adjustments ( e. g., hip strategy). As balance on a short base emphasizes the utilization of the hip strategy for balance control, we hypothesized that patients with LBP might have difficulties standing on short bases. Methods. Subjects stood on either flat surface or short base with different visual inputs. A task was counted as successful if balance was maintained for 70 seconds during bilateral stance and 30 seconds during unilateral stance. The number of successful tasks, horizontal shear force, and center-of-pressure motion were evaluated. Results. The hip strategy was reduced with increased visual dependence in study participants with LBP. The failure rate was more than 4 times that of the controls in the bilateral standing task on short base with eyes closed. Analysis of center-of-pressure motion also showed that they have inability to initiate and control a hip strategy. Conclusions. The inability to control a hip strategy indicates a deficit of postural control and is hypothesized to result from altered muscle control and proprioceptive impairment.
Resumo:
Objectives. It has been proposed that disruption of the internal proprioceptive representation, via incongruent sensory input, may underpin pathological pain states, but experimental evidence relies on conflicting visual input, which is not clinically relevant. We aimed to determine the symptomatic effect of incongruent proprioceptive input, imparted by vibration of the wrist tendons, which evokes the illusion of perpetual wrist flexion and disrupts cortical proprioceptive representation. Methods. Twenty-nine healthy and naive volunteers reported symptoms during five conditions: control, active and passive wrist flexion, extensor carpi radialis tendon vibration to evoke illusion of perpetual wrist flexion, and ulnar styloid (sham) vibration. No advice was given about possible illusions. Results. Twenty-one subjects reported the illusion of perpetual wrist flexion during tendon vibration. There was no effect of condition or of whether or not subjects reported an illusion on discomfort/pain (P > 0.28). Peculiarity, swelling and foreignness were greater during tendon vibration than during the other conditions, and greater during tendon vibration in those who reported an illusion of wrist flexion than in those who did not (P < 0.05 for all). Symptoms were reported by at least two subjects in each condition and four subjects reported systemic symptoms (e.g. nausea). Conclusions. In healthy volunteers, incongruent proprioceptive input does not cause discomfort or pain but does evoke feelings of peculiarity, swelling and foreignness in the limb.
Resumo:
This study investigated the use of treatment theories and procedures for postural control training used by Occupational Therapists (OTs) when working with hemiplegic adults who have had cerebrovascular accident (CVA) or traumatic brain injury (TBI). The method of data collection was a national survey of 400 randomly selected physical disability OTs with 127 usable surveys returned. Results showed that the most common used treatment theory was neurodevelopmental treatment (NDT), followed by motor relearning program (MRP), proprioceptive neuromuscular facilitation (PNF), Brunnstrom's approach, and the approach of Rood. The most common treatment posture used was sitting, followed by standing, mat activity, equilibrium reaction training, and walking. The factors affecting the use of various treatment theories procedures were years certified, years of clinical experience, work situation and work status. Pearson correlation coefficient analyses found significant positive relationships between treatment theories and postures. There were significant high correlations between usage of all pairs of treatment procedures. ^
Resumo:
Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.