873 resultados para Proportional assisted ventilation
Resumo:
Background: Patients with idiopathic pulmonary fibrosis (IPF) present an important ventilatory (imitation reducing their exercise capacity. Non-invasive ventilatory support has been shown to improve exercise capacity in patients with obstructive diseases; however, its effect on IPF patients remains unknown. Objective: The present study assessed the effect of ventilatory support using proportional, assist ventilation (PAV) on exercise capacity in patients with IPF. Methods: Ten patients (61.2 +/- 9.2 year-old) were submitted to a cardiopulmonary exercise testing, plethysmography and three submaximal. exercise tests (60% of maximum load): without ventilatory support, with continuous positive airway pressure (CPAP) and PAV. Submaximal tests were performed randomly and exercise capacity, cardiovascular and ventilatory response as well as breathlessness subjective perception were evaluated. Lactate plasmatic levels were obtained before and after submaximal. exercise. Results: Our data show that patients presented a limited exercise capacity (9.7 +/- 3.8 mL O(2)/kg/min). Submaximal. test was increased in patients with PAV compared with CPAP and without ventilatory support (respectively, 11.1 +/- 8.8 min, 5.6 +/- 4.7 and 4.5 +/- 3.8 min; p < 0.05). An improved arterial oxygenation and lower subjective perception to effort was also observed in patients with IPF when exercise was performed with PAV (p < 0.05). IPF patients performing submaximal exercise with PAV also presented a lower heart rate during exercise, although systolic and diastolic pressures were not different among submaximal tests. Our results suggest that PAV can increase exercise tolerance and decrease dyspnoea and cardiac effort in patients with idiopathic pulmonary fibrosis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The goal of the study was to compare the effects of different assisted ventilation modes with pressure controlled ventilation (PCV) on lung histology, arterial blood gases, inflammatory and fibrogenic mediators in experimental acute lung injury (ALI). Paraquat-induced ALI rats were studied. At 24 h, animals were anaesthetised and further randomized as follows (n = 6/group): (1) pressure controlled ventilation mode (PCV) with tidal volume (V (T)) = 6 ml/kg and inspiratory to expiratory ratio (I:E) = 1:2; (2) three assisted ventilation modes: (a) assist-pressure controlled ventilation (APCV1:2) with I:E = 1:2, (b) APCV1:1 with I:E = 1:1; and (c) biphasic positive airway pressure and pressure support ventilation (BiVent + PSV), and (3) spontaneous breathing without PEEP in air. PCV, APCV1:1, and APCV1:2 were set with P (insp) = 10 cmH(2)O and PEEP = 5 cmH(2)O. BiVent + PSV was set with two levels of CPAP [inspiratory pressure (P (High) = 10 cmH(2)O) and positive end-expiratory pressure (P (Low) = 5 cmH(2)O)] and inspiratory/expiratory times: T (High) = 0.3 s and T (Low) = 0.3 s. PSV was set as follows: 2 cmH(2)O above P (High) and 7 cmH(2)O above P (Low). All rats were mechanically ventilated in air and PEEP = 5 cmH(2)O for 1 h. Assisted ventilation modes led to better functional improvement and less lung injury compared to PCV. APCV1:1 and BiVent + PSV presented similar oxygenation levels, which were higher than in APCV1:2. Bivent + PSV led to less alveolar epithelium injury and lower expression of tumour necrosis factor-alpha, interleukin-6, and type III procollagen. In this experimental ALI model, assisted ventilation modes presented greater beneficial effects on respiratory function and a reduction in lung injury compared to PCV. Among assisted ventilation modes, Bi-Vent + PSV demonstrated better functional results with less lung damage and expression of inflammatory mediators.
Resumo:
Objective: To compare the triggering performance of mid-level ICU mechanical ventilators with a standard ICU mechanical ventilator. Design: Experimental bench study. Setting: The respiratory care laboratory of a university-affiliated teaching hospital. Subject: A computerized mechanical lung model, the IngMar ASL5000. Interventions: Ten mid-level ICU ventilators were compared to an ICU ventilator at two levels of lung model effort, three combinations of respiratory mechanics (normal, COPD and ARDS) and two modes of ventilation, volume and pressure assist/control. A total of 12 conditions were compared. Measurements and main results: Performance varied widely among ventilators. Mean inspiratory trigger time was < 100 ms for only half of the tested ventilators. The mean inspiratory delay time (time from initiation of the breath to return of airway pressure to baseline) was longer than that for the ICU ventilator for all tested ventilators except one. The pressure drop during triggering (Ptrig) was comparable with that of the ICU ventilator for only two ventilators. Expiratory Settling Time (time for pressure to return to baseline) had the greatest variability among ventilators. Conclusions: Triggering differences among these mid-level ICU ventilators and with the ICU ventilator were identified. Some of these ventilators had a much poorer triggering response with high inspiratory effort than the ICU ventilator. These ventilators do not perform as well as ICU ventilators in patients with high ventilatory demand.
Resumo:
BACKGROUND: Previous studies have shown positive effects from noninvasive ventilation (NIV) or supplemental oxygen on exercise capacity in patients with COPD. However, the best adjunct for promoting physiologic adaptations to physical training in patients with severe COPD remains to be investigated. METHODS: Twenty-eight patients (mean +/- SD age 68 +/- 7 y) with stable COPD (FEV(1) 34 +/- 9% of predicted) undergoing an exercise training program were randomized to either NIV (n = 14) or supplemental oxygen (n = 14) during group training to maintain peripheral oxygen saturation (S(pO2)) >= 90%. Physical training consisted of treadmill walking (at 70% of maximal speed) 3 times a week, for 6 weeks. Patients were assessed at baseline and after 6 weeks. Assessments included physiological adaptations during incremental exercise testing (ratio of lactate concentration to walk speed, oxygen uptake [(V) over dot(O2)], and dyspnea), exercise tolerance during 6-min walk test, leg fatigue, maximum inspiratory pressure, and health-related quality of life. RESULTS: Two patients in each group dropped out due to COPD exacerbations and lack of exercise program adherence, and 24 completed the training program. Both groups improved 6-min walk distance, symptoms, and health-related quality of life. However, there were significant differences between the NIV and supplemental-oxygen groups in lactate/speed ratio (33% vs -4%), maximum inspiratory pressure (80% vs 23%), 6-min walk distance (122 m vs 47 m), and leg fatigue (25% vs 11%). In addition, changes in S(pO2)/speed, (V) over dot(O2), and dyspnea were greater with NIV than with supplemental-oxygen. CONCLUSIONS: NIV alone is better than supplemental oxygen alone in promoting beneficial physiologic adaptations to physical exercise in patients with severe COPD.
Resumo:
BACKGROUND: Using a bench test model, we investigated the hypothesis that neonatal and/or adult ventilators equipped with neonatal/pediatric modes currently do not reliably administer pressure support (PS) in neonatal or pediatric patient groups in either the absence or presence of air leaks. METHODS: PS was evaluated in 4 neonatal and 6 adult ventilators using a bench model to evaluate triggering, pressurization, and cycling in both the absence and presence of leaks. Delivered tidal volumes were also assessed. Three patients were simulated: a preterm infant (resistance 100 cm H2O/L/s, compliance 2 mL/cm H2O, inspiratory time of the patient [TI] 400 ms, inspiratory effort 1 and 2 cm H2O), a full-term infant (resistance 50 cm H2O/L/s, compliance 5 mL/cm H2O, TI 500 ms, inspiratory effort 2 and 4 cm H2O), and a child (resistance 30 cm H2O/L/s, compliance 10 mL/cm H2O, TI 600 ms, inspiratory effort 5 and 10 cm H2O). Two PS levels were tested (10 and 15 cm H2O) with and without leaks and with and without the leak compensation algorithm activated. RESULTS: Without leaks, only 2 neonatal ventilators and one adult ventilator had trigger delays under a given predefined acceptable limit (1/8 TI). Pressurization showed high variability between ventilators. Most ventilators showed TI in excess high enough to seriously impair patient-ventilator synchronization (> 50% of the TI of the subject). In some ventilators, leaks led to autotriggering and impairment of ventilation performance, but the influence of leaks was generally lower in neonatal ventilators. When a noninvasive ventilation algorithm was available, this was partially corrected. In general, tidal volume was calculated too low by the ventilators in the presence of leaks; the noninvasive ventilation algorithm was able to correct this difference in only 2 adult ventilators. CONCLUSIONS: No ventilator performed equally well under all tested conditions for all explored parameters. However, neonatal ventilators tended to perform better in the presence of leaks. These findings emphasize the need to improve algorithms for assisted ventilation modes to better deal with situations of high airway resistance, low pulmonary compliance, and the presence of leaks.
Resumo:
Objectivo: avaliar e caracterizar a linfopenia em doentes admitidos numa unidade de cuidados intensivos para suporte ventilatório por exacerbação de insuficiência respiratória crónica e eventual relação com a gravidade da doença. Material e métodos: estudo prospectivo com 6 meses de duração e mais 6 meses de seguimento após alta da unidade. Incluídos 24 doentes, 22 homens, com APACHE II médio de 19,7, 3 dos quais com possibilidade de seguimento após a alta. Foram colhidas análises para determinação das subpopulações linfocitárias na admissão e a cada 7 dias de ventilação mecânica. Excluídos doentes com sinais de infecção ou imunossupressão prévia, à excepção dos corticóides. Resultados: a linfopenia foi encontrada em 79,2 % dos doentes com depleção de todas as subpopulações linfocitárias sendo mais expressiva a depleção de linfócitos B CD19+. Esta linfopenia não se relacionou com os níveis séricos de cortisol, e apesar de se relacionar com uma maior gravidade clínica não esteve associada a uma maior mortalidade. O registo evolutivo no internamento mostrou tendencialmente uma recuperação da linfopenia. Conclusões: a linfopenia é frequente em doentes ventilados por exacerbação de doença respiratória crónica. Trata-se de uma linfopenia não selectiva, que recupera ao longo do internamento, mais acentuada ao nível dos linfócitos B CD19+. Estes doentes apresentam índices de gravidade maior mas sem diferenças na mortalidade. O seguimento ambulatório destes doentes mostrou-se difícil e foi inconclusivo.
Resumo:
Mitochondrial tRNA(Leu(UUR)) mutation m.3302A > G is associated with respiratory chain complex I deficiency and has been described as a rare cause of mostly adult-onset slowly progressive myopathy. Five families with 11 patients have been described so far; 5 of them died young due to cardiorespiratory failure. Here, we report on a segregation study in a family with an index patient who already presented at the age of 18 months with proximal muscular hypotonia, abnormal fatigability, and lactic acidosis. This early-onset myopathy was rapidly progressive. At 8 years, the patient is wheel-chair bound, requires nocturnal assisted ventilation, and suffers from recurrent respiratory infections. Severe complex I deficiency and nearly homoplasmy for m.3302A > G were found in muscle. We collected blood, hair, buccal swabs and muscle biopsies from asymptomatic adults in this pedigree and determined heteroplasmy levels in these tissues as well as OXPHOS activities in muscle. All participating asymptomatic adults had normal OXPHOS activities. In contrast to earlier reports, we found surprisingly little variation of heteroplasmy levels in different tissues of the same individual. Up to 45% mutation load in muscle and up to 38% mutation load in other tissues were found in non-affected adults. The phenotypic spectrum of tRNA(Leu(UUR)) m.3302A > G mutation seems to be wider than previously described. A threshold of more than 45% heteroplasmy in muscle seems to be necessary to alter complex I activity leading to clinical manifestation. The presented data may be helpful for prognostic considerations and counseling in affected families.
Resumo:
ABSTRACT: Conventional mechanical ventilators rely on pneumatic pressure and flow sensors and controllers to detect breaths. New modes of mechanical ventilation have been developed to better match the assistance delivered by the ventilator to the patient's needs. Among these modes, neurally adjusted ventilatory assist (NAVA) delivers a pressure that is directly proportional to the integral of the electrical activity of the diaphragm recorded continuously through an esophageal probe. In clinical settings, NAVA has been chiefly compared with pressure-support ventilation, one of the most popular modes used during the weaning phase, which delivers a constant pressure from breath to breath. Comparisons with proportional-assist ventilation, which has numerous similarities, are lacking. Because of the constant level of assistance, pressure-support ventilation reduces the natural variability of the breathing pattern and can be associated with asynchrony and/or overinflation. The ability of NAVA to circumvent these limitations has been addressed in clinical studies and is discussed in this report. Although the underlying concept is fascinating, several important questions regarding the clinical applications of NAVA remain unanswered. Among these questions, determining the optimal NAVA settings according to the patient's ventilatory needs and/or acceptable level of work of breathing is a key issue. In this report, based on an investigator-initiated round table, we review the most recent literature on this topic and discuss the theoretical advantages and disadvantages of NAVA compared with other modes, as well as the risks and limitations of NAVA.
Resumo:
Total intravenous anaesthesia (TIVA) with propofol and ketamine proved to be very satisfactory from a clinical point of view. This blind randomised controlled trial was designed to compare induction and maintenance of anaesthesia under continuous infusion of propofol-racemic ketamine (PRK) with that of propofol-S-ketamine (PSK) and evaluate their haemodynamic, metabolic and ventilatory effects. Seven female dogs undergoing ovariohysterectomy were involved in each group. Anaesthesia was induced: in Group PRK, with propofol (4.0mg kg-1) and racemic ketamine (2.0mg kg-1) intravenous (i.v.), followed by i.v. infusion of propofol (initial dose of 0.5mg kg-1 min-1) and racemic ketamine (0.2mg kg-1 min-1); in Group PSK, with propofol (4.0mg kg-1) and S-ketamine (1.0 mg kg¹) i.v., followed by i.v. infusion of propofol (initial dose of 0.5mg kg-1 min-1) and S-ketamine (0.1mg kg-1 min-1). Parameters were assessed before anaesthesia and in 6 time points after induction. In both groups, heart rate increased significantly at all time points. There was a slight decrease in systemic blood pressure, cardiac output and cardiac index in both groups. The systolic index decrease significantly and intense respiratory depression was observed in all groups, making assisted ventilation necessary.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mitochondrial tRNA(Leu(UUR)) mutation m.3302A > G is associated with respiratory chain complex I deficiency and has been described as a rare cause of mostly adult-onset slowly progressive myopathy. Five families with 11 patients have been described so far; 5 of them died young due to cardiorespiratory failure. Here, we report on a segregation study in a family with an index patient who already presented at the age of 18 months with proximal muscular hypotonia, abnormal fatigability, and lactic acidosis. This early-onset myopathy was rapidly progressive. At 8 years, the patient is wheel-chair bound, requires nocturnal assisted ventilation, and suffers from recurrent respiratory infections. Severe complex I deficiency and nearly homoplasmy for m.3302A > G were found in muscle. We collected blood, hair, buccal swabs and muscle biopsies from asymptomatic adults in this pedigree and determined heteroplasmy levels in these tissues as well as OXPHOS activities in muscle. All participating asymptomatic adults had normal OXPHOS activities. In contrast to earlier reports, we found surprisingly little variation of heteroplasmy levels in different tissues of the same individual. Up to 45% mutation load in muscle and up to 38% mutation load in other tissues were found in non-affected adults. The phenotypic spectrum of tRNA(Leu(UUR)) m.3302A > G mutation seems to be wider than previously described. A threshold of more than 45% heteroplasmy in muscle seems to be necessary to alter complex I activity leading to clinical manifestation. The presented data may be helpful for prognostic considerations and counseling in affected families.
Resumo:
Lorsqu’une femme est à risque d’accoucher prématurément, des glucocorticoïdes lui seront administrés afin d’accélérer la maturation pulmonaire du bébé. Après la naissance, différents protocoles peuvent être mis en place pour aider l’enfant à respirer dont l’administration du surfactant et la ventilation. Les glucocorticoïdes ont un effet positif sur la maturation pulmonaire. Par contre, ils nuisent au processus de la septation après la naissance. Les glucocorticoïdes retrouvés dans le poumon en développement peuvent provenir de deux sources, soit de la voie classique de la synthèse des glucocorticoïdes par les surrénales, soit des gènes exprimés dans le poumon. Les sites d’expression des gènes codant pour les enzymes de la synthèse des glucocorticoïdes dans le poumon sont inconnus ainsi que le gène de la 20α-hydroxystéroïde déshydrogénase (20α-HSD). Cette dernière inactive le substrat et le produit de la 21-hydroxylase. Des poumons de fœtus de souris au jour de gestation 15,5, 17,5 et 19,5 ainsi que de souriceaux âgés de 0, 5 et 15 jours ont été utilisés pour des hybridations in situ. Cette étude a montré qu’avant la naissance, l’ARNm de la 21-hydroxylase est situé au niveau des cellules épithéliales distales alors que l’ARNm de la 20α-HSD se retrouve plutôt au niveau des capillaires. Les gènes de la 21-hydroxylase et de la 20α-HSD sont exprimés dans les cellules épithéliales proximales ainsi que dans les cellules endothéliales de veines dans la période entourant la naissance. À la fin du stade sacculaire et pendant le stade alvéolaire, le gène de la 21-hydroxylase est exprimé seulement dans les septa et les parois minces tout comme le gène de la 20α-HSD sauf dans le stade alvéolaire où il n’y avait pas de signal significatif. Ainsi, ces résultats suggèrent que la 20α-HSD pourrait participer au contrôle du niveau d’activité de la 21-hydroxylase en modulant la disponibilité de son substrat.
Resumo:
Neurally adjusted ventilatory assist or NAVA is a new assisted ventilatory mode which, in comparison with pressure support, leads to improved patient-ventilator synchrony and a more variable ventilatory pattern. It also improves arterial oxygenation. With NAVA, the electrical activity of the diaphragm is recorded through a nasogastric tube equipped with electrodes. This electrical activity is then used to pilot the ventilator. With NAVA, the patient's respiratory pattern controls the ventilator's timing of triggering and cycling as well as the magnitude of pressurization, which is proportional to inspiratory demand. The effect of NAVA on patient outcome remains to be determined through well-designed prospective studies.
Resumo:
Purpose: The objective of this study is to evaluate blood glucose (BG) control efficacy and safety of 3 insulin protocols in medical intensive care unit (MICU) patients. Methods: This was a multicenter randomized controlled trial involving 167 MICU patients with at least one BG measurement +/- 150 mg/dL and one or more of the following: mechanical ventilation, systemic inflammatory response syndrome, trauma, or burns. The interventions were computer-assisted insulin protocol (CAIP), with insulin infusion maintaining BG between 100 and 130 mg/dL; Leuven protocol, with insulin maintaining BG between 80 and 110 mg/dL; or conventional treatment-subcutaneous insulin if glucose > 150 mg/dL. The main efficacy outcome was the mean of patients` median BG, and the safety outcome was the incidence of hypoglycemia (<= 40 mg/dL). Results: The mean of patients` median BG was 125.0, 127.1, and 158.5 mg/dL for CAIP, Leuven, and conventional treatment, respectively (P = .34, CAIP vs Leuven; P < .001, CAIP vs conventional). In CAIP, 12 patients (21.4%) had at least one episode of hypoglycemia vs 24 (41.4%) in Leuven and 2 (3.8%) in conventional treatment (P = .02, CAIP vs Leuven; P = .006, CAIP vs conventional). Conclusions: The CAIP is safer than and as effective as the standard strict protocol for controlling glucose in MICU patients. Hypoglycemia was rare under conventional treatment. However, BG levels were higher than with IV insulin protocols. (C) 2009 Elsevier Inc. All rights reserved.