916 resultados para Proportional Hazards Model
Resumo:
Hierarchically clustered populations are often encountered in public health research, but the traditional methods used in analyzing this type of data are not always adequate. In the case of survival time data, more appropriate methods have only begun to surface in the last couple of decades. Such methods include multilevel statistical techniques which, although more complicated to implement than traditional methods, are more appropriate. ^ One population that is known to exhibit a hierarchical structure is that of patients who utilize the health care system of the Department of Veterans Affairs where patients are grouped not only by hospital, but also by geographic network (VISN). This project analyzes survival time data sets housed at the Houston Veterans Affairs Medical Center Research Department using two different Cox Proportional Hazards regression models, a traditional model and a multilevel model. VISNs that exhibit significantly higher or lower survival rates than the rest are identified separately for each model. ^ In this particular case, although there are differences in the results of the two models, it is not enough to warrant using the more complex multilevel technique. This is shown by the small estimates of variance associated with levels two and three in the multilevel Cox analysis. Much of the differences that are exhibited in identification of VISNs with high or low survival rates is attributable to computer hardware difficulties rather than to any significant improvements in the model. ^
Resumo:
Accelerated life testing (ALT) is widely used to obtain reliability information about a product within a limited time frame. The Cox s proportional hazards (PH) model is often utilized for reliability prediction. My master thesis research focuses on designing accelerated life testing experiments for reliability estimation. We consider multiple step-stress ALT plans with censoring. The optimal stress levels and times of changing the stress levels are investigated. We discuss the optimal designs under three optimality criteria. They are D-, A- and Q-optimal designs. We note that the classical designs are optimal only if the model assumed is correct. Due to the nature of prediction made from ALT experimental data, attained under the stress levels higher than the normal condition, extrapolation is encountered. In such case, the assumed model cannot be tested. Therefore, for possible imprecision in the assumed PH model, the method of construction for robust designs is also explored.
Resumo:
This work develops a new methodology in order to discriminate models for interval-censored data based on bootstrap residual simulation by observing the deviance difference from one model in relation to another, according to Hinde (1992). Generally, this sort of data can generate a large number of tied observations and, in this case, survival time can be regarded as discrete. Therefore, the Cox proportional hazards model for grouped data (Prentice & Gloeckler, 1978) and the logistic model (Lawless, 1982) can befitted by means of generalized linear models. Whitehead (1989) considered censoring to be an indicative variable with a binomial distribution and fitted the Cox proportional hazards model using complementary log-log as a link function. In addition, a logistic model can be fitted using logit as a link function. The proposed methodology arises as an alternative to the score tests developed by Colosimo et al. (2000), where such models can be obtained for discrete binary data as particular cases from the Aranda-Ordaz distribution asymmetric family. These tests are thus developed with a basis on link functions to generate such a fit. The example that motivates this study was the dataset from an experiment carried out on a flax cultivar planted on four substrata susceptible to the pathogen Fusarium oxysoprum. The response variable, which is the time until blighting, was observed in intervals during 52 days. The results were compared with the model fit and the AIC values.
Resumo:
The concordance probability is used to evaluate the discriminatory power and the predictive accuracy of nonlinear statistical models. We derive an analytic expression for the concordance probability in the Cox proportional hazards model. The proposed estimator is a function of the regression parameters and the covariate distribution only and does not use the observed event and censoring times. For this reason it is asymptotically unbiased, unlike Harrell's c-index based on informative pairs. The asymptotic distribution of the concordance probability estimate is derived using U-statistic theory and the methodology is applied to a predictive model in lung cancer.
Resumo:
The standard analyses of survival data involve the assumption that survival and censoring are independent. When censoring and survival are related, the phenomenon is known as informative censoring. This paper examines the effects of an informative censoring assumption on the hazard function and the estimated hazard ratio provided by the Cox model.^ The limiting factor in all analyses of informative censoring is the problem of non-identifiability. Non-identifiability implies that it is impossible to distinguish a situation in which censoring and death are independent from one in which there is dependence. However, it is possible that informative censoring occurs. Examination of the literature indicates how others have approached the problem and covers the relevant theoretical background.^ Three models are examined in detail. The first model uses conditionally independent marginal hazards to obtain the unconditional survival function and hazards. The second model is based on the Gumbel Type A method for combining independent marginal distributions into bivariate distributions using a dependency parameter. Finally, a formulation based on a compartmental model is presented and its results described. For the latter two approaches, the resulting hazard is used in the Cox model in a simulation study.^ The unconditional survival distribution formed from the first model involves dependency, but the crude hazard resulting from this unconditional distribution is identical to the marginal hazard, and inferences based on the hazard are valid. The hazard ratios formed from two distributions following the Gumbel Type A model are biased by a factor dependent on the amount of censoring in the two populations and the strength of the dependency of death and censoring in the two populations. The Cox model estimates this biased hazard ratio. In general, the hazard resulting from the compartmental model is not constant, even if the individual marginal hazards are constant, unless censoring is non-informative. The hazard ratio tends to a specific limit.^ Methods of evaluating situations in which informative censoring is present are described, and the relative utility of the three models examined is discussed. ^
Resumo:
This dissertation develops and explores the methodology for the use of cubic spline functions in assessing time-by-covariate interactions in Cox proportional hazards regression models. These interactions indicate violations of the proportional hazards assumption of the Cox model. Use of cubic spline functions allows for the investigation of the shape of a possible covariate time-dependence without having to specify a particular functional form. Cubic spline functions yield both a graphical method and a formal test for the proportional hazards assumption as well as a test of the nonlinearity of the time-by-covariate interaction. Five existing methods for assessing violations of the proportional hazards assumption are reviewed and applied along with cubic splines to three well known two-sample datasets. An additional dataset with three covariates is used to explore the use of cubic spline functions in a more general setting. ^
Resumo:
In this paper, we derive score test statistics to discriminate between proportional hazards and proportional odds models for grouped survival data. These models are embedded within a power family transformation in order to obtain the score tests. In simple cases, some small-sample results are obtained for the score statistics using Monte Carlo simulations. Score statistics have distributions well approximated by the chi-squared distribution. Real examples illustrate the proposed tests.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In most studies on beef cattle longevity, only the cows reaching a given number of calvings by a specific age are considered in the analyses. With the aim of evaluating all cows with productive life in herds, taking into consideration the different forms of management on each farm, it was proposed to measure cow longevity from age at last calving (ALC), that is, the most recent calving registered in the files. The objective was to characterize this trait in order to study the longevity of Nellore cattle, using the Kaplan-Meier estimators and the Cox model. The covariables and class effects considered in the models were age at first calving (AFC), year and season of birth of the cow and farm. The variable studied (ALC) was classified as presenting complete information (uncensored = 1) or incomplete information (censored = 0), using the criterion of the difference between the date of each cow's last calving and the date of the latest calving at each farm. If this difference was >36 months, the cow was considered to have failed. If not, this cow was censored, thus indicating that future calving remained possible for this cow. The records of 11 791 animals from 22 farms within the Nellore Breed Genetic Improvement Program ('Nellore Brazil') were used. In the estimation process using the Kaplan-Meier model, the variable of AFC was classified into three age groups. In individual analyses, the log-rank test and the Wilcoxon test in the Kaplan-Meier model showed that all covariables and class effects had significant effects (P < 0.05) on ALC. In the analysis considering all covariables and class effects, using the Wald test in the Cox model, only the season of birth of the cow was not significant for ALC (P > 0.05). This analysis indicated that each month added to AFC diminished the risk of the cow's failure in the herd by 2%. Nonetheless, this does not imply that animals with younger AFC had less profitability. Cows with greater numbers of calvings were more precocious than those with fewer calvings. Copyright © The Animal Consortium 2012.
Resumo:
This paper introduces a novel approach to making inference about the regression parameters in the accelerated failure time (AFT) model for current status and interval censored data. The estimator is constructed by inverting a Wald type test for testing a null proportional hazards model. A numerically efficient Markov chain Monte Carlo (MCMC) based resampling method is proposed to simultaneously obtain the point estimator and a consistent estimator of its variance-covariance matrix. We illustrate our approach with interval censored data sets from two clinical studies. Extensive numerical studies are conducted to evaluate the finite sample performance of the new estimators.
Resumo:
Sizes and power of selected two-sample tests of the equality of survival distributions are compared by simulation for small samples from unequally, randomly-censored exponential distributions. The tests investigated include parametric tests (F, Score, Likelihood, Asymptotic), logrank tests (Mantel, Peto-Peto), and Wilcoxon-Type tests (Gehan, Prentice). Equal sized samples, n = 18, 16, 32 with 1000 (size) and 500 (power) simulation trials, are compared for 16 combinations of the censoring proportions 0%, 20%, 40%, and 60%. For n = 8 and 16, the Asymptotic, Peto-Peto, and Wilcoxon tests perform at nominal 5% size expectations, but the F, Score and Mantel tests exceeded 5% size confidence limits for 1/3 of the censoring combinations. For n = 32, all tests showed proper size, with the Peto-Peto test most conservative in the presence of unequal censoring. Powers of all tests are compared for exponential hazard ratios of 1.4 and 2.0. There is little difference in power characteristics of the tests within the classes of tests considered. The Mantel test showed 90% to 95% power efficiency relative to parametric tests. Wilcoxon-type tests have the lowest relative power but are robust to differential censoring patterns. A modified Peto-Peto test shows power comparable to the Mantel test. For n = 32, a specific Weibull-exponential comparison of crossing survival curves suggests that the relative powers of logrank and Wilcoxon-type tests are dependent on the scale parameter of the Weibull distribution. Wilcoxon-type tests appear more powerful than logrank tests in the case of late-crossing and less powerful for early-crossing survival curves. Guidelines for the appropriate selection of two-sample tests are given. ^
Resumo:
The problem of analyzing data with updated measurements in the time-dependent proportional hazards model arises frequently in practice. One available option is to reduce the number of intervals (or updated measurements) to be included in the Cox regression model. We empirically investigated the bias of the estimator of the time-dependent covariate while varying the effect of failure rate, sample size, true values of the parameters and the number of intervals. We also evaluated how often a time-dependent covariate needs to be collected and assessed the effect of sample size and failure rate on the power of testing a time-dependent effect.^ A time-dependent proportional hazards model with two binary covariates was considered. The time axis was partitioned into k intervals. The baseline hazard was assumed to be 1 so that the failure times were exponentially distributed in the ith interval. A type II censoring model was adopted to characterize the failure rate. The factors of interest were sample size (500, 1000), type II censoring with failure rates of 0.05, 0.10, and 0.20, and three values for each of the non-time-dependent and time-dependent covariates (1/4,1/2,3/4).^ The mean of the bias of the estimator of the coefficient of the time-dependent covariate decreased as sample size and number of intervals increased whereas the mean of the bias increased as failure rate and true values of the covariates increased. The mean of the bias of the estimator of the coefficient was smallest when all of the updated measurements were used in the model compared with two models that used selected measurements of the time-dependent covariate. For the model that included all the measurements, the coverage rates of the estimator of the coefficient of the time-dependent covariate was in most cases 90% or more except when the failure rate was high (0.20). The power associated with testing a time-dependent effect was highest when all of the measurements of the time-dependent covariate were used. An example from the Systolic Hypertension in the Elderly Program Cooperative Research Group is presented. ^