982 resultados para Proportional
Resumo:
Cum ./LSTA_A_8828879_O_XML_IMAGES/LSTA_A_8828879_O_ILM0001.gif rule [Singh (1975)] has been suggested in the literature for finding approximately optimum strata boundaries for proportional allocation, when the stratification is done on the study variable. This paper shows that for the class of density functions arising from the Wang and Aggarwal (1984) representation of the Lorenz Curve (or DBV curves in case of inventory theory), the cum ./LSTA_A_8828879_O_XML_IMAGES/LSTA_A_8828879_O_ILM0002.gif rule in place of giving approximately optimum strata boundaries, yields exactly optimum boundaries. It is also shown that the conjecture of Mahalanobis (1952) “. . .an optimum or nearly optimum solutions will be obtained when the expected contribution of each stratum to the total aggregate value of Y is made equal for all strata” yields exactly optimum strata boundaries for the case considered in the paper.
Resumo:
Approximate closed-form solutions of the non-linear relative equations of motion of an interceptor pursuing a target under the realistic true proportional navigation (RTPN) guidance law are derived using the Adomian decomposition method in this article. In the literature, no study has been reported on derivation of explicit time-series solutions in closed form of the nonlinear dynamic engagement equations under the RTPN guidance. The Adomian method provides an analytical approximation, requiring no linearization or direct integration of the non-linear terms. The complete derivation of the Adomian polynomials for the analysis of the dynamics of engagement under RTPN guidance is presented for deterministic ideal case, and non-ideal dynamics in the loop that comprises autopilot and actuator dynamics and target manoeuvre, as well as, for a stochastic case. Numerical results illustrate the applicability of the method.
Resumo:
A theorem termed the Geometrical Continuity Theorem is enunciated and proven. This theorem throws light on the aspects of the continuity of the proportional portion with the base weir portion. These two portions constitute the profile of a proportional weir. A weir of this type with circular bottom is designed. The theorem is used to establish the continuity at the junction of the proportional and the base weir portions of this weir. The coordinates of the weir profile are obtained by numerical methods and are furnished in tabular form for ready use by designers. The discharge passing through the weir is a linear function of the head. The verification of the assumed linear discharge-head relation is furnished for one of the three weirs with which experiments were conducted. The coefficient of discharge for this typical weir is found to be a constant with a value of 0.59.
Resumo:
Of the many factors that govern the settling phenomenon, the flow velocity in the settling tanks can be controlled favorably by fixing suitably designed weirs at the outlets of the tanks. The velocity at the bottom should not dislodge the particles that have already settled. These requirements might be met with by velocities which are controlled to be constant with respect to the depth of flow, or velocities which reduce linearly with increasing depth or velocities that vary inversely with the depth. To achieve these types of velocity control, new proportional weirs have been designed. Very near to the outlet of the tank, over a small length, the flow was found to be turbulent and noncompliant with the expected type of velocity control. This small length of the disturbance may be provided over and above the theoretical settling length of the tank, for efficient sedimentation.
Resumo:
Seven different shaped modified proportional V-notches were designed and pertinent data for their use are given in tables 1 - 4. It is shown that the indication accuracies of these weirs are more than that of the conventional V-notch. For five of the designed weirs the indication accuracies are more than that of the conventional rectangular weir at lower heads of flow. All these proportional weirs, except the parabolic based weir, have added advantages over the V-notch in regard to fixing and finding the crest level. Experiments with five weirs (four symmetrical and one unsymmetrical) having rectangular bases and one (symmetrical) with a parabolic base show very good agreement with the theory and give consistent values for the coefficient of discharge, Cd, varying between 0.588 and 0.605, within the ranges of the experiments.
Resumo:
A new solution for unbalanced and nonlinear loads in terms of power circuit topology and controller structure is proposed in this paper. A three-phase four-wire high-frequency ac-link inverter is adopted to cater to such loads. Use of high-frequency transformer results in compact and light-weight systems. The fourth wire is taken out from the midpoint of the isolation transformer in order to avoid the necessity of an extra leg. This makes the converter suitable for unbalanced loads and eliminates the requirements of bulky capacitor in half-bridge inverter. The closed-loop control is carried out in stationary reference frame using proportional + multiresonant controller (three separate resonant controller for fundamental, fifth and seventh harmonic components). The limitations on improving steady-state response of harmonic resonance controllers is investigated and mitigated using a lead-lag compensator. The proposed voltage controller is used along with an inner current loop to ensure excellent performance of the power converter. Simulation studies and experimental results with 1 kVA prototype under nonlinear and unbalanced loading conditions validate the proposed scheme.
Resumo:
A theory and generalized synthesis procedure is advocated for the design of weir notches and orifice-notches having a base in any given shape, to a depth a, such that the discharge through it is proportional to any singular monotonically-increasing function of the depth of flow measured above a certain datum. The problem is reduced to finding an exact solution of a Volterra integral equation in Abel form. The maximization of the depth of the datum below the crest of the notch is investigated. Proof is given that for a weir notch made out of one continuous curve, and for a flow proportional to the mth power of the head, it is impossible to bring the datum lower than (2m − 1)a below the crest of the notch. A new concept of an orifice-notch, having discontinuity in the curve and a division of flow into two distinct portions, is presented. The division of flow is shown to have a beneficial effect in reducing the datum below (2m − 1)a from the crest of the weir and still maintaining the proportionality of the flow. Experimental proof with one such orifice-notch is found to have a constant coefficient of discharge of 0.625. The importance of this analysis in the design of grit chambers is emphasized.
Resumo:
The variation of gas amplification with applied voltage is an important characteristic of a proportional counter. Results of studies on gas amplification for gas fillings of argon quenched with ethane and carbon dioxide are given. The effects of (a) pressure, (b) quenching agent and (c) concentration on A are discussed briefly.
Resumo:
Problems like windup or rollover arise in a PI controller working under saturation. Hence anti-windup schemes are necessary to minimize performance degradation.Similar situation may occur in a Proportional Resonant(PR)controller in the presence of a sustained error input.Several methods can be employed based on existing knowledge on PI controller to counter this problem.In this paper few such schemes are proposed and implemented in FPGA and MATLAB and from the obtained results their possible use and limitations have been studied.
Resumo:
This paper presents a practical linear proportional weir of simple geometric shape in the form of an inverted V-notch or inward trapezium. The flow through this weir, of half-width w and altitude d, for depths above 0.22d is proportional to the depth of flow measured above a reference plane situated at 0.08d for all heads in the range 0.22d<=h<=0.94d, with a maximum percentage deviation of ±1.5 from the theoretical discharge. The linear relationship between head and discharge is based on numerical optimization procedures. Nearly 75% of the depth of inverted V-notch can be used effectively as the measuring range. Experiments with four weirs, with different vertex angles, show excellent agreement with the theory by giving an average coefficient of discharge for each weir varying from 0.61–0.62.
Resumo:
Five different shaped weirs were designed and pertinent data for their use are given. One of these weir shapes had the least “sharp edge” at the junction of the base weir and “complementary weir.” Two other types of weirs had equal slopes at the junction of the base weir and complementary weir. Another shape, for which neither the indication accuracy was constant nor the slope was equal at the junction of the base weir and complementary weir, was also tested. The results of the four weir shapes hydraulically tested give consistent values for the coefficient of discharge varying between 0.625 to 0.631. The indication accuracies of all the previously designed linear proportional weirs (includig Sutro weir) are neither constant nor unity, as is believed.
Resumo:
The capturability of a realistic generalized true proportional navigation (RGTPN) guidance law, against a nonmaneuvering target, is analyzed. The RGTPN law is obtained by relaxing the somewhat unrealistic assumption of constant closing velocity, made in all earlier studies on generalized true proportional navigation (GTPN), and incorporating the actual time-varying value in the guidance law. Closed-form solutions for the complete capture region of RGTPN is obtained in terms of both zero and acceptable non-zero miss distances. It is shown that the capture region of RGTPN in the initial relative velocity space is significantly smaller than that of GTPN, for reasonable values of navigation constant (N) and angular direction (eta) of the missile commanded latax. However, for certain values of N and eta, capturability of RGTPN is found to be better. It is also shown that if in one of the versions of GTPN, which uses constant values of both the closing velocity and the line-of-sight (LOS) angular velocity in the guidance law, the corresponding realistic time-varying quantities are used, the capture region actually expands to cover the whole of the initial relative velocity space. A number of examples are given to compare the capture performance of RGTPN with other versions of the GTPN guidance laws.
Resumo:
In this paper, a new proportional-navigation guidance law, called retro-proportional-navigation, is proposed. The guidance law is designed to intercept targets that are of higher speeds than the interceptor. This is a typical scenario in a ballistic target interception. The capture region analysis for both proportional-navigation and retro-proportional-navigation guidance laws are presented. The study shows that, at the cost of a higher intercept time, the retro-proportional-navigation guidance law demands lower terminal lateral acceleration than proportional navigation and can intercept high-velocity targets from many initial conditions that the classical proportional navigation cannot. Also, the capture region with the retro-proportional-navigation guidance law is shown to be larger compared with the classical proportional-navigation guidance law.
Resumo:
A regenerative or circulating-power method is presented in this paper for heat run test on the legs of a three-level neutral point clamped (NPC) inverter. This test ensures that only losses are drawn from the dc supply, while rated power is circulated between the two legs, thus minimising wastage of energy. A proportional-resonant (PR) controller based current control scheme is proposed here for the circulating power test setup in NPC inverter. Simulation and experimental results are presented to validate the controller design at various operating conditions. Results of thermal test on the inverter legs are presented at two different operating conditions.