9 resultados para Prolinamides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recoverable (Sa)-binam-l-prolinamide in combination with benzoic acid is used as catalysts in the direct aldol reaction between cycloalkyl, alkyl, and α-functionalized ketones and aldehydes under solvent-free reaction conditions. Three different methods are assayed: simple conventional magnetic stirring, magnetic stirring after previous dissolution in THF and evaporation, and ball mill technique. These procedures allow one to reduce not only the amount of required ketone to 2 equiv but also the reaction time to give the aldol products with regio-, diastereo-, and enantioselectivities comparable to those in organic or aqueous solvents. Generally anti-isomers are mainly obtained with enantioselectivities up to 97%. The reaction can be carried out under these conditions also using aldehydes as nucleophiles, yielding after in situ reduction of the aldol products the corresponding chiral 1,3-diols with moderate to high enantioselectivities mainly as anti-isomers. The aldol reaction has been studied by the use of positive ESI-MS technique, providing the evidence of the formation of the corresponding enamine−iminium intermediates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica-gel supported binam-derived prolinamides are efficient organocatalysts for the direct intramolecular and intermolecular aldol reaction under solvent-free conditions using conventional magnetic stirring. These organocatalysts in combination with benzoic acid showed similar results to those obtained under similar homogeneous reaction conditions using an organocatalyst of related structure. For the intermolecular process, the aldol products were obtained at room temperature and using only 2 equiv of the ketone with high yields, regio-, diastereo- and enantioselectivities. Under these reaction conditions, also the cross aldol reaction between aldehydes is possible. The recovered catalyst can be reused up to nine times providing similar results. More interestingly, these heterogeneous organocatalysts can be used in the intramolecular aldol reaction allowing the synthesis of the Wieland–Miescher and ketone analogues with up to 92% ee, with its reused being possible up to five times without detrimental on the obtained results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wet unsupported and supported 1,1′-binaphthalene-2,2′-diamine (BINAM) derived prolinamides are efficient organocatalysts under solvent-free conditions at room temperature to perform the synthesis of chiral tacrine analogues in good yields (up to 93%) and excellent enantioselectivies (up to 96%). The Friedländer reaction involved in this process takes place with several cyclohexanone derivatives and 2-aminoaromatic aldehydes, and it is compatible with the presence of either electron-withdrawing or electron-donating groups at the aromatic ring of the 2-aminoaryl aldehyde derivatives used as electrophiles. The reaction can be extended to cyclopentanone derivatives, affording a regioisomeric but separable mixture of products. The use of the wet silica gel supported organocatalyst, under solvent-free conditions, for this process led to the expected product (up to 87% enantiomeric excess), with its reuse being possible at least up to five times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aqueous 2,2-dimethoxyacetaldehyde (60% wt solution) is used as an acceptor in aldol reactions, with cyclic and acyclic ketones and aldehydes as donors, organocatalyzed by 10 mol % of N-tosyl-(Sa)-binam-l-prolinamide [(Sa)-binam-sulfo-l-Pro] at rt under solvent-free conditions. The corresponding monoprotected 2-hydroxy-1,4-dicarbonyl compounds are obtained in good yields and with high levels of diastereo- and enantioselectivity mainly as anti-aldols. In the case of 4-substituted cyclohexanones a desymmetrization process takes place to mainly afford the anti,anti-aldols. 2,2-Dimethyl-1,3-dioxan-5-one allows the synthesis of a useful intermediate for the preparation of carbohydrates in higher yield, de and ee than with l-Pro as the organocatalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chiral L-prolinamides 2 containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-pyrimidinyl unit are synthesized and used as general organocatalysts for intermolecular and intramolecular aldol reactions with 1,6-hexanedioic acid as a co-catalyst under solvent-free conditions. The intermolecular reaction between ketone–aldehyde and aldehyde–aldehyde must be performed under wet conditions with catalyst (S,S)-2b at 10 °C, which affords anti-aldols with high regio-, diastereo-, and enantioselectivities. For the Hajos–Parrish–Eder–Sauer–Wiechert reaction, both diastereomers of catalyst 2 give similar results at room temperature in the absence of water to give the corresponding Wieland–Miescher ketone and derivatives. Both types of reactions were scaled up to 1 g, and the organocatalysts were recovered by extractive workup and reused without any appreciable loss in activity. DFT calculations support the stereochemical results of the intermolecular process and the bifunctional role played by the organocatalyst by providing a computational comparison of the H-bonding networks occurring with catalysts 2a and 2b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BINAM-prolinamides are very efficient catalyst for the synthesis of non-protected and N-benzyl isatin derivatives by using an aldol reaction between ketones and isatins under solvent-free conditions. The results in terms of diastereo- and enantioselectivities are good, up to 99% de and 97% ee, and higher to those previously reported in the literature under similar reaction conditions. A high variation of the results is observed depending on the structure of the isatin and the ketone used in the process. While 90% of ee and 97% ee, respectively, is obtained by using (Ra)-BINAM-l-(bis)prolinamide as catalyst in the addition of cyclohexanone and α-methoxyacetone to free isatin, 90% ee is achieved for the reaction between N-benzyl isatin and acetone using N-tosyl BINAM-l-prolinamide as catalyst. This reaction is also carried out using a silica BINAM-l-prolinamide supported catalyst under solvent-free conditions, which can be reused up to five times giving similar results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

手性胺是合成天然产物和手性药物的重要中间体,亚胺的不对称催化还原是制备光学活性手性胺的最直接有效的方法之一。但是,由于C=N双键的反应活性较弱以及容易发生E/Z异构等问题,亚胺的不对称催化还原具有很大的挑战性,既具有高对映选择性又具有宽广底物普适性的催化剂很少。 本文分别由手性脯氨酸、哌啶酸、哌嗪酸以及氨基醇出发,设计和合成了一系列结构新颖、合成简便、性能优良的酰胺类有机小分子路易斯碱催化剂,以廉价的三氯氢硅为氢源,用这些催化剂催化亚胺不对称还原,得到了非常优良的收率、对映选择性和前所未有的底物普适性。 文献研究认为,除N-甲酰基外,分子内含有芳香酰胺是能催化亚胺还原的有机小分子路易斯碱催化剂具有较高对映选择性的必要条件,我们研究发现N-甲酰脯氨酸非芳香酰胺类催化剂(包括结构简单的C2-对称型脯氨酰胺类催化剂),对N-芳基酮亚胺的还原可获得达86%的对映选择性,远高于同类芳香酰胺催化剂,证明N-甲酰非芳香酰胺类路易斯碱催化剂在亚胺还原中也能得到高的对映选择性。 在进一步研究中,我们以手性六元哌啶酸为模板,分别设计合成了N-甲酰哌啶酸芳香酰胺和N-甲酰哌啶酸非芳香酰胺两类催化剂,其中芳香酰胺催化剂(S)-N-(甲酰基)哌啶-2-酸-1-萘基酰胺(28)和非芳香酰胺催化剂(2S,1'S,2'S)-N-(甲酰基)-哌啶-2-酸(1',2'-二苯基-2'-乙酰氧基-乙基)酰胺(30)显示出非常优良的催化活性和对映选择性,对于N-芳基芳香酮亚胺的还原,无论是缺电子体系还是富电子体系,绝大部分都能得到很高的收率(达98%)和对映选择性(达96% ee)。特别值得一提的是30对一些脂肪族亚胺和α,β-不饱和亚胺的还原,虽然底物为E/Z混合物,也能得到很高的收率(达93%)和对映选择性(达95% ee),这样的底物普适性在过渡金属催化体系中也是前所未有的。 现有的催化亚胺还原的高对映选择性催化体系大多仅适用于甲基酮亚胺底物,对位阻较大的非甲基酮亚胺很难获得好的结果。我们以L-哌嗪酸为模板设计和合成出的(S)-N-(甲酰基)-哌嗪-2-酸-4-对叔丁基苯磺酰基-苯基酰胺不但对N-芳基甲基酮亚胺有很好的对映选择性(达90% ee),而且对于大位阻的N-芳基非甲基酮亚胺有更好的对映选择性(达97% ee)。该催化剂与30在底物普适性方面具有很好的互补性。 我们还设计了基于1,2-二苯基氨基醇为模板的新型N-甲酰路易斯碱有机小分子催化剂,首次发现结构简单的N-甲酰(1S,2R)二苯基氨基醇能较好的催化N-芳基酮亚胺,最高可以得到82%的对映选择性。 针对我们设计合成的结构新颖、性能优良的催化剂,我们对催化机理进行了探讨和解释,提出了几个假想的机理模型。 Catalytic enantioselective reduction of imines represents one of the most straightforward and efficient methods for the preparation of chiral amines, an important intermediate for the synthesis of natural products and chiral drugs. However, asymmetric reduction of imines remains a big challenge and highly enantioselective catalysts with a satisfactorily broad substrate scope remain elusive. Factors contributing to the difficulty of this transformation include the weak reactivity of the C=N bond and the existence of inseparable mixtures of E/Z isomers. Starting from chiral proline, pipecolinic acid, piperazine-2-carboxylic acid and 1,2-diphenyl amino alcohol, a series of structurally simple and easily prepared amides were developed as highly effective Lewis basic organocatalysts for the asymmetric reduction of imines with trichlorosilane as the reducing agent, which promoted the reduction of N-aryl imines with high yields and excellent enantioselectivities with an unprecedented substrate spectrum. In the literature, it has been believed that besides the N-formyl group, the existence of an arylamido group in the structure of Lewis basic organocatalysts is a prerequisite for obtaining high enantioselectivity in the catalytic reduction of imines. However, we found that the N-formyl-L-prolinamides bearing non-arylamido groups, including structurally simple C2-symmetric tetraamides, could also work as effective Lewis basic catalysts to promote the asymmetric reduction of ketimines with high enantioselectivities (up to 86% ee), which are even more enantioselective than the analogues with arylamido groups. In further studies, we developed novel N-formamides with arylamido groups and non-arylmido groups as Lewis basic catalysts using the commercially available L-pipecolinic acid as the template. The catalysts (S)-1-formyl-piperidine-2-carboxylic acid naphthylamide 28 and (2S,1'S,2'S)-acetic acid 2-[(1-formyl-piperidine-2-carbonyl) -amino]-1,2-diphenyl-ethyl ester 30 were found to promote the reduction of a broad range of N-aryl imines in high yields (up to 98%) and excellent ee values (up to 96%) under mild conditions. Furthermore, catalyst 30 also exhibited high enantioselectivities (up to 95% ee) for the challenging aliphatic ketimines and α,β-unsaturated imines despite that these imines exist as E/Z isomeric mixtures. The broad substrate spectrum of this catalyst is unprecedented in catalytic asymmetric imine reduction, including transition-metal-catalyzed hydrogenation processes. Many of the currently available highly enantioselective catalytic systems only tolerate methyl ketimines, which gave poor results for bulkier non-methyl ketimines. Starting from L-piperazine-2-carboxylic acid, we developed (S)-4-(4-tert- butylbenzenesulfonyl)-1-formyl-N-phenyl-piperazine-2-carboxamide as highly enantioselective Lewis basic catalysts for the hydrosilylation of both methyl ketimines and steric bulky non-methyl ketimines. Moreover, higher enantioselectivities were obtained for non-methyl ketimines than methyl ketimines under the catalysis of this catalyst. Thus, this catalyst system complements with 30 in terms of the substrate scope. We also found that easily accessible (1R,2S)-N-formyl-1,2-diphenyl- 2-aminoethanol worked as an effective Lewis basic catalyst in the enantioselective hydrosilylation of ketimines, affording high enantioselectivities (up to 82% ee) for a broad range of ketimines. To rationalize the high efficiencies of the structurally novel catalysts we developed, several catalytic models have been proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The asymmetric Michael addition of aldehydes to nitroolefins was investigated using L-prolinamide derivatives of 2-(2'-piperidinyl)pyridine as catalyst and a variety of phenols as co-catalyst. Extensive screening toward the effect of prolinamides, phenols, and solvents on this transformation revealed that a combination of (S)-2-(2'-piperidinyl)pyridine-derived trans-4-hydroxy-L-prolinamide 2c, (S)-1,1'-bi-2-naphthol, and dichloromethane was a promising system. This system was shown to be amenable to a rich variety of aldehydes and nitroolefins and afforded the nitroaldehyde products with excellent yield, enantiomeric excess (up to 99%) and diastereoselectivity ratio (up to 99/1), even in the case of 1 mol % catalyst loading and 1.5 equiv of aldehydes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemists have long sought to extrapolate the power of biological catalysis and recognition to synthetic systems. These efforts have focused largely on low molecular weight catalysts and receptors; however, biological systems themselves rely almost exclusively on polymers, proteins and RNA, to perform complex chemical functions. Proteins and RNA are unique in their ability to adopt compact, well-ordered conformations, and specific folding provides precise spatial orientation of the functional groups that comprise the “active site”. These features suggest that identification of new polymer backbones with discrete and predictable folding propensities (“foldamers”) will provide a basis for design of molecular machines with unique capabilities. The foldamer approach complements current efforts to design unnatural properties into polypeptides and polynucleotides. The aim of this thesis is the synthesis and conformational studies of new classes of foldamers, using a peptidomimetic approach. Moreover their attitude to be utilized as ionophores, catalysts, and nanobiomaterials were analyzed in solution and in the solid state. This thesis is divided in thematically chapters that are reported below. It begins with a very general introduction (page 4) which is useful, but not strictly necessary, to the expert reader. It is worth mentioning that paragraph I.3 (page 22) is the starting point of this work and paragraph I.5 (page 32) isrequired to better understand the results of chapters 4 and 5. In chapter 1 (page 39) is reported the synthesis and conformational analysis of a novel class of foldamers containing (S)-β3-homophenylglycine [(S)-β3-hPhg] and D- 4-carboxy-oxazolidin-2-one (D-Oxd) residues in alternate order is reported. The experimental conformational analysis performed in solution by IR, 1HNMR, and CD spectroscopy unambiguously proved that these oligomers fold into ordered structures with increasing sequence length. Theoretical calculations employing ab initio MO theory suggest a helix with 11-membered hydrogenbonded rings as the preferred secondary structure type. The novel structures enrich the field of peptidic foldamers and might be useful in the mimicry of native peptides. In chapter 2 cyclo-(L-Ala-D-Oxd)3 and cyclo-(L-Ala-DOxd) 4 were prepared in the liquid phase with good overall yields and were utilized for bivalent ions chelation (Ca2+, Mg2+, Cu2+, Zn2+ and Hg2+); their chelation skill was analyzed with ESI-MS, CD and 1HNMR techniques and the best results were obtained with cyclo-(L-Ala-D-Oxd)3 and Mg2+ or Ca2+. Chapter 3 describes an application of oligopeptides as catalysts for aldol reactions. Paragraph 3.1 concerns the use of prolinamides as catalysts of the cross aldol addition of hydroxyacetone to aromatic aldeydes, whereas paragraphs 3.2 and 3.3 are about the catalyzed aldol addition of acetone to isatins. By means of DFT and AIM calculations, the steric and stereoelectronic effects that control the enantioselectivity in the cross-aldol addition of acetone to isatin catalysed by L-proline have been studied, also in the presence of small quantities of water. In chapter 4 is reported the synthesis and the analysis of a new fiber-like material, obtained from the selfaggregation of the dipeptide Boc-L-Phe-D-Oxd-OBn, which spontaneously forms uniform fibers consisting of parallel infinite linear chains arising from singleintermolecular N-H···O=C hydrogen bonds. This is the absolute borderline case of a parallel β-sheet structure. Longer oligomers of the same series with general formula Boc-(L-Phe-D-Oxd)n-OBn (where n = 2-5), are described in chapter 5. Their properties in solution and in the solid state were analyzed, in correlation with their attitude to form intramolecular hydrogen bond. In chapter 6 is reported the synthesis of imidazolidin-2- one-4-carboxylate and (tetrahydro)-pyrimidin-2-one-5- carboxylate, via an efficient modification of the Hofmann rearrangement. The reaction affords the desired compounds from protected asparagine or glutamine in good to high yield, using PhI(OAc)2 as source of iodine(III).