985 resultados para Projector-Camera system
Resumo:
We discuss the operation of a new type of optical sensor (MISCam) based on a metal-insulator-semiconductor (MIS) structure. The operation principle relies on light-induced changes of the band bending and barrier height at the interface between semiconductor and insulator. An image is obtained from the quenching of the ac signal in analogy to the principle of the laser-scanned photodiode (LSP). Lateral resolution depends on the semiconductor material chosen. We have characterised the MIS structures by C-V, I-V, and spectral response measurements testing different types of insulators like a-Si3N4, SiO2, and AlN. The presence of slow interface charges allows for image memory. Colour sensors can be realised by controlling sign and magnitude of the electric fields in the base and the interface region.
Resumo:
A three-level satellite to ground monitoring scheme for conservation easement monitoring has been implemented in which high-resolution imagery serves as an intermediate step for inspecting high priority sites. A digital vertical aerial camera system was developed to fulfill the need for an economical source of imagery for this intermediate step. A method for attaching the camera system to small aircraft was designed, and the camera system was calibrated and tested. To ensure that the images obtained were of suitable quality for use in Level 2 inspections, rectified imagery was required to provide positional accuracy of 5 meters or less to be comparable to current commercially available high-resolution satellite imagery. Focal length calibration was performed to discover the infinity focal length at two lens settings (24mm and 35mm) with a precision of O.1mm. Known focal length is required for creation of navigation points representing locations to be photographed (waypoints). Photographing an object of known size at distances on a test range allowed estimates of focal lengths of 25.lmm and 35.4mm for the 24mm and 35mm lens settings, respectively. Constants required for distortion removal procedures were obtained using analytical plumb-line calibration procedures for both lens settings, with mild distortion at the 24mm setting and virtually no distortion found at the 35mm setting. The system was designed to operate in a series of stages: mission planning, mission execution, and post-mission processing. During mission planning, waypoints were created using custom tools in geographic information system (GIs) software. During mission execution, the camera is connected to a laptop computer with a global positioning system (GPS) receiver attached. Customized mobile GIs software accepts position information from the GPS receiver, provides information for navigation, and automatically triggers the camera upon reaching the desired location. Post-mission processing (rectification) of imagery for removal of lens distortion effects, correction of imagery for horizontal displacement due to terrain variations (relief displacement), and relating the images to ground coordinates were performed with no more than a second-order polynomial warping function. Accuracy testing was performed to verify the positional accuracy capabilities of the system in an ideal-case scenario as well as a real-world case. Using many welldistributed and highly accurate control points on flat terrain, the rectified images yielded median positional accuracy of 0.3 meters. Imagery captured over commercial forestland with varying terrain in eastern Maine, rectified to digital orthophoto quadrangles, yielded median positional accuracies of 2.3 meters with accuracies of 3.1 meters or better in 75 percent of measurements made. These accuracies were well within performance requirements. The images from the digital camera system are of high quality, displaying significant detail at common flying heights. At common flying heights the ground resolution of the camera system ranges between 0.07 meters and 0.67 meters per pixel, satisfying the requirement that imagery be of comparable resolution to current highresolution satellite imagery. Due to the high resolution of the imagery, the positional accuracy attainable, and the convenience with which it is operated, the digital aerial camera system developed is a potentially cost-effective solution for use in the intermediate step of a satellite to ground conservation easement monitoring scheme.
Resumo:
We compared particle data from a moored video camera system with sediment trap derived fluxes at ~1100 m depth in the highly dynamic coastal upwelling system off Cape Blanc, Mauritania. Between spring 2008 and winter 2010 the trap collected settling particles in 9-day intervals, while the camera recorded in-situ particle abundance and size-distribution every third day. Particle fluxes were highly variable (40-1200 mg m**-2 d**-1) and followed distinct seasonal patterns with peaks during spring, summer and fall. The particle flux patterns from the sediment traps correlated to the total particle volume captured by the video camera, which ranged from1 to 22 mm**3 l**-1. The measured increase in total particle volume during periods of high mass flux appeared to be better related to increases in the particle concentrations, rather than to increased average particle size. We observed events that had similar particle fluxes, but showed clear differences in particle abundance and size-distribution, and vice versa. Such observations can only be explained by shifts in the composition of the settling material, with changes both in particle density and chemical composition. For example, the input of wind-blown dust from the Sahara during September 2009 led to the formation of high numbers of comparably small particles in the water column. This suggests that, besides seasonal changes, the composition of marine particles in one region underlies episodical changes. The time between the appearance of high dust concentrations in the atmosphere and the increase lithogenic flux in the 1100 m deep trap suggested an average settling rate of 200 m d**-1, indicating a close and fast coupling between dust input and sedimentation of the material.
Resumo:
In this paper we present an adaptive multi-camera system for real time object detection able to efficiently adjust the computational requirements of video processing blocks to the available processing power and the activity of the scene. The system is based on a two level adaptation strategy that works at local and at global level. Object detection is based on a Gaussian mixtures model background subtraction algorithm. Results show that the system can efficiently adapt the algorithm parameters without a significant loss in the detection accuracy.
Resumo:
The Optical, Spectroscopic, and Infrared Remote Imaging System OSIRIS is the scientific camera system onboard the Rosetta spacecraft (Figure 1). The advanced high performance imaging system will be pivotal for the success of the Rosetta mission. OSIRIS will detect 67P/Churyumov-Gerasimenko from a distance of more than 106 km, characterise the comet shape and volume, its rotational state and find a suitable landing spot for Philae, the Rosetta lander. OSIRIS will observe the nucleus, its activity and surroundings down to a scale of ~2 cm px−1. The observations will begin well before the onset of cometary activity and will extend over months until the comet reaches perihelion. During the rendezvous episode of the Rosetta mission, OSIRIS will provide key information about the nature of cometary nuclei and reveal the physics of cometary activity that leads to the gas and dust coma. OSIRIS comprises a high resolution Narrow Angle Camera (NAC) unit and a Wide Angle Camera (WAC) unit accompanied by three electronics boxes. The NAC is designed to obtain high resolution images of the surface of comet 7P/Churyumov-Gerasimenko through 12 discrete filters over the wavelength range 250–1000 nm at an angular resolution of 18.6 μrad px−1. The WAC is optimised to provide images of the near-nucleus environment in 14 discrete filters at an angular resolution of 101 μrad px−1. The two units use identical shutter, filter wheel, front door, and detector systems. They are operated by a common Data Processing Unit. The OSIRIS instrument has a total mass of 35 kg and is provided by institutes from six European countries
Resumo:
Cette thése a été réalisée dans le cadre d'une cotutelle avec l'Institut National Polytechnique de Grenoble (France). La recherche a été effectuée au sein des laboratoires de vision 3D (DIRO, UdM) et PERCEPTION-INRIA (Grenoble).
Resumo:
Remote monitoring through the use of cameras is widely utilized for traffic operation, but has not been utilized widely for roadway maintenance operations. The Utah Department of Transportation (UDOT) has implemented a new remote monitoring system, referred to as a Cloud-enabled Remote Video Streaming (CRVS) camera system for snow removal-related maintenance operations in the winter. The purpose of this study was to evaluate the effectiveness of the use of the CRVS camera system in snow removal-related maintenance operations. This study was conducted in two parts: opinion surveys of maintenance station supervisors and an analysis on snow removal-related maintenance costs. The responses to the opinion surveys mostly displayed positive reviews of the use of the CRVS cameras. On a scale of 1 (least effective) to 5 (most effective), the average overall effectiveness given by the station supervisors was 4.3. An expedition trip for this study was defined as a trip that was made to just check the roadways if snow-removal was necessary. The average of the responses received from surveys was calculated to be a 33 percent reduction in expedition trips. For the second part of this study, an analysis was performed on the snow removal-related maintenance cost data provided by UDOT to see if the installation of a CRVS camera had an effect in reducing expedition trips. This expedition cost comparison was performed for 10 sets of maintenance stations within Utah. It was difficult to make any definitive inferences from the comparison of expedition costs over the years for which precipitation and expedition cost data were available; hence a statistical analysis was performed using the Mixed Model ANOVA. This analysis resulted in an average of 14 percent higher ratio of expedition costs at maintenance stations with a CRVS camera before the installation of the camera compared to the ratio of expedition costs after the installation of the camera. This difference was not proven to be statistically significant at the 95 percent confident level, but indicated that the installation of CRVS cameras was on the average helpful in reducing expedition costs and may be considered practically significant. It is recommended that more detailed and consistent maintenance cost records be prepared for accurate analysis of cost records for this type of study in the future.
Resumo:
Ce mémoire s'intéresse à la vision par ordinateur appliquée à des projets d'art technologique. Le sujet traité est la calibration de systèmes de caméras et de projecteurs dans des applications de suivi et de reconstruction 3D en arts visuels et en art performatif. Le mémoire s'articule autour de deux collaborations avec les artistes québécois Daniel Danis et Nicolas Reeves. La géométrie projective et les méthodes de calibration classiques telles que la calibration planaire et la calibration par géométrie épipolaire sont présentées pour introduire les techniques utilisées dans ces deux projets. La collaboration avec Nicolas Reeves consiste à calibrer un système caméra-projecteur sur tête robotisée pour projeter des vidéos en temps réel sur des écrans cubiques mobiles. En plus d'appliquer des méthodes de calibration classiques, nous proposons une nouvelle technique de calibration de la pose d'une caméra sur tête robotisée. Cette technique utilise des plans elliptiques générés par l'observation d'un seul point dans le monde pour déterminer la pose de la caméra par rapport au centre de rotation de la tête robotisée. Le projet avec le metteur en scène Daniel Danis aborde les techniques de calibration de systèmes multi-caméras. Pour son projet de théâtre, nous avons développé un algorithme de calibration d'un réseau de caméras wiimotes. Cette technique basée sur la géométrie épipolaire permet de faire de la reconstruction 3D d'une trajectoire dans un grand volume à un coût minime. Les résultats des techniques de calibration développées sont présentés, de même que leur utilisation dans des contextes réels de performance devant public.
Resumo:
A visual telepresence system has been developed at the University of Reading which utilizes eye tracing to adjust the horizontal orientation of the cameras and display system according to the convergence state of the operator's eyes. Slaving the cameras to the operator's direction of gaze enables the object of interest to be centered on the displays. The advantage of this is that the camera field of view may be decreased to maximize the achievable depth resolution. An active camera system requires an active display system if appropriate binocular cues are to be preserved. For some applications, which critically depend upon the veridical perception of the object's location and dimensions, it is imperative that the contribution of binocular cues to these judgements be ascertained because they are directly influenced by camera and display geometry. Using the active telepresence system, we investigated the contribution of ocular convergence information to judgements of size, distance and shape. Participants performed an open- loop reach and grasp of the virtual object under reduced cue conditions where the orientation of the cameras and the displays were either matched or unmatched. Inappropriate convergence information produced weak perceptual distortions and caused problems in fusing the images.
Resumo:
Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.
Resumo:
In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhead
Resumo:
Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.