955 resultados para Projective and enumerative geometry
Resumo:
Mode of access: Internet.
Resumo:
In this note we describe the intersection of all quadric hypersur- faces containing a given linearly normal smooth projective curve of genus n and degree 2n + 1
Resumo:
We present measurements of J/psi yields in d + Au collisions at root S(NN) = 200 GeV recorded by the PHENIX experiment and compare them with yields in p + p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. In order to remove model dependent systematic uncertainties we also compare the data to a simple geometric model. The forward rapidity data are inconsistent with nuclear modifications that are linear or exponential in the density weighted longitudinal thickness, such as those from the final state breakup of the bound state.
Resumo:
Convex cone, toric variety, graph theory, electrochemical catalysis, oxidation of formic acid, feedback-loopsbifurcations, enzymatic catalysis, Peroxidase reaction, Shil'nikov chaos
Resumo:
Drainage-basin and channel-geometry multiple-regression equations are presented for estimating design-flood discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at stream sites on rural, unregulated streams in Iowa. Design-flood discharge estimates determined by Pearson Type-III analyses using data collected through the 1990 water year are reported for the 188 streamflow-gaging stations used in either the drainage-basin or channel-geometry regression analyses. Ordinary least-squares multiple-regression techniques were used to identify selected drainage-basin and channel-geometry regions. Weighted least-squares multiple-regression techniques, which account for differences in the variance of flows at different gaging stations and for variable lengths in station records, were used to estimate the regression parameters. Statewide drainage-basin equations were developed from analyses of 164 streamflow-gaging stations. Drainage-basin characteristics were quantified using a geographic-information-system (GIS) procedure to process topographic maps and digital cartographic data. The significant characteristics identified for the drainage-basin equations included contributing drainage area, relative relief, drainage frequency, and 2-year, 24-hour precipitation intensity. The average standard errors of prediction for the drainage-basin equations ranged from 38.6% to 50.2%. The GIS procedure expanded the capability to quantitatively relate drainage-basin characteristics to the magnitude and frequency of floods for stream sites in Iowa and provides a flood-estimation method that is independent of hydrologic regionalization. Statewide and regional channel-geometry regression equations were developed from analyses of 157 streamflow-gaging stations. Channel-geometry characteristics were measured on site and on topographic maps. Statewide and regional channel-geometry regression equations that are dependent on whether a stream has been channelized were developed on the basis of bankfull and active-channel characteristics. The significant channel-geometry characteristics identified for the statewide and regional regression equations included bankfull width and bankfull depth for natural channels unaffected by channelization, and active-channel width for stabilized channels affected by channelization. The average standard errors of prediction ranged from 41.0% to 68.4% for the statewide channel-geometry equations and from 30.3% to 70.0% for the regional channel-geometry equations. Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates.
Resumo:
Contingut del Pòster presentat al congrés New Trends in Dynamical Systems
Resumo:
Three dimensional model design is a well-known and studied field, with numerous real-world applications. However, the manual construction of these models can often be time-consuming to the average user, despite the advantages o ffered through computational advances. This thesis presents an approach to the design of 3D structures using evolutionary computation and L-systems, which involves the automated production of such designs using a strict set of fitness functions. These functions focus on the geometric properties of the models produced, as well as their quantifiable aesthetic value - a topic which has not been widely investigated with respect to 3D models. New extensions to existing aesthetic measures are discussed and implemented in the presented system in order to produce designs which are visually pleasing. The system itself facilitates the construction of models requiring minimal user initialization and no user-based feedback throughout the evolutionary cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration into the applicability and e ffectiveness of a multi-objective approach to the problem is also presented, with a focus on both performance and visual results. Although subjective, these results o er insight into future applications and study in the fi eld of computational aesthetics and automated structure design.
Resumo:
A high power Nz laser of the double-Blumlein type having a modified gas flow system, electrode configuration, and discharge geometry with minimum inductance is described. By incorporating a triggere’d-pressurized spark gap switch, arc-free operation was achieved for a wide E/P range. The device gives a peak power in excess of 700 kW with a FWHM of 3 ns and an efficiency of 0.51%, which is remarkably high for a pulsed nitrogen laser system. The dependence of output power on parameters such as operating pressure, voltage, and repetition rate are discussed.
Resumo:
Recurso para la evaluación de la enseñanza y el aprendizaje de la geometría en la enseñanza secundaria desde la perspectiva de los nuevos docentes y de los que tienen más experiencia. Está diseñado para ampliar y profundizar el conocimiento de la materia y ofrecer consejos prácticos e ideas para el aula en el contexto de la práctica y la investigación actual. Hace especial hincapié en: comprender las ideas fundamentales del currículo de geometría; el aprendizaje de la geometría de manera efectiva; la investigación y la práctica actual; las ideas erróneas y los errores; el razonamiento de la geometría; la solución de problemas; el papel de la tecnología en el aprendizaje de la geometría.
Resumo:
The Dirac field is studied in a Lyra space-time background by means of the classical Schwinger Variational Principle. We obtain the equations of motion, establish the conservation laws, and get a scale relation relating the energy-momentum and spin tensors. Such scale relation is an intrinsic property for matter fields in Lyra background.
Resumo:
The influence of test method factors (notch shape, square or angular, and pre-cracking method, by tapping onto or pressing a razor blade) on the results obtained in plane strain fracture toughness test according to standard ASTM D5045 using SENB specimens made of a commercial PMMA resin were investigated. Results were analyzed quantitatively by comparing the obtained K-IC values and qualitatively by observing their effect on the Moire fringes observed using photoelasticity, showing that, at 95% significance level, the K-IC values are affected by the pre-cracking method, with the most conservative value being obtained when natural pre-cracks were introduced by tapping onto a razor blade (K-IC = 1.15 +/- 0.11 MPa.m(0.5)). This correlates with a perturbation in the stress field close to the pre-crack tip observed in the photoelasticity test sample when it was introduced by pressing the razor blade. Surprisingly, notch geometry only slightly affects the results. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the operator variability of different finishing and polishing techniques. After placing 120 composite restorations (Tetric EvoCeram) in plexiglassmolds, the surface of the specimens was roughened in a standardized manner. Twelve operators with different experience levels polished the specimens using the following finishing/polishing procedures: method 1 (40 ?m diamond [40D], 15 ?m diamond [15D], 42 ?m silicon carbide polisher [42S], 6 ?m silicon carbide polisher [6S] and Occlubrush [O]); method 2 (40D, 42S, 6S and O); method 3 (40D, 42S, 6S and PoGo); method 4 (40D, 42S and PoGo) and method 5 (40D, 42S and O). The mean surface roughness (Ra) was measured with a profilometer. Differences between the methods were analyzed with non-parametric ANOVA and pairwise Wilcoxon signed rank tests (?=0.05). All the restorations were qualitatively assessed using SEM. Methods 3 and 4 showed the best polishing results and method 5 demonstrated the poorest. Method 5 was also most dependent on the skills of the operator. Except for method 5, all of the tested procedures reached a clinically acceptable surface polish of Ra?0.2 ?m. Polishing procedures can be simplified without increasing variability between operators and without jeopardizing polishing results.