991 resultados para Project data portal
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
An investigation of the construction data management needs of the Florida Department of Transportation (FDOT) with regard to XML standards including development of data dictionary and data mapping. The review of existing XML schemas indicated the need for development of specific XML schemas. XML schemas were developed for all FDOT construction data management processes. Additionally, data entry, approval and data retrieval applications were developed for payroll compliance reporting and pile quantity payment development.
Resumo:
Protein adsorption at solid-liquid interfaces is critical to many applications, including biomaterials, protein microarrays and lab-on-a-chip devices. Despite this general interest, and a large amount of research in the last half a century, protein adsorption cannot be predicted with an engineering level, design-orientated accuracy. Here we describe a Biomolecular Adsorption Database (BAD), freely available online, which archives the published protein adsorption data. Piecewise linear regression with breakpoint applied to the data in the BAD suggests that the input variables to protein adsorption, i.e., protein concentration in solution; protein descriptors derived from primary structure (number of residues, global protein hydrophobicity and range of amino acid hydrophobicity, isoelectric point); surface descriptors (contact angle); and fluid environment descriptors (pH, ionic strength), correlate well with the output variable-the protein concentration on the surface. Furthermore, neural network analysis revealed that the size of the BAD makes it sufficiently representative, with a neural network-based predictive error of 5% or less. Interestingly, a consistently better fit is obtained if the BAD is divided in two separate sub-sets representing protein adsorption on hydrophilic and hydrophobic surfaces, respectively. Based on these findings, selected entries from the BAD have been used to construct neural network-based estimation routines, which predict the amount of adsorbed protein, the thickness of the adsorbed layer and the surface tension of the protein-covered surface. While the BAD is of general interest, the prediction of the thickness and the surface tension of the protein-covered layers are of particular relevance to the design of microfluidics devices.
Resumo:
Two new statistics, namely Delta(chi 2) and Delta(chi), based on the extreme value theory, were derived by Gupta et al. We use these statistics to study the direction dependence in the HST Key Project data, which provides one of the most precise measurements of the Hubble constant. We also study the non-Gaussianity in this data set using these statistics. Our results for Delta(chi 2) show that the significance of direction-dependent systematics is restricted to well below the 1 sigma confidence limit; however, the presence of non-Gaussian features is subtle. On the other hand, the Delta(chi). statistic, which is more sensitive to direction dependence, shows direction dependence systematics to be at a slightly higher confidence level, and the presence of non-Gaussian features at a level similar to the Delta(chi 2) statistic.
Resumo:
La infraestructura europea ICOS (Integrated Carbon Observation System), tiene como misión proveer de mediciones de gases de efecto invernadero a largo plazo, lo que ha de permitir estudiar el estado actual y comportamiento futuro del ciclo global del carbono. En este contexto, geomati.co ha desarrollado un portal de búsqueda y descarga de datos que integra las mediciones realizadas en los ámbitos terrestre, marítimo y atmosférico, disciplinas que hasta ahora habían gestionado los datos de forma separada. El portal permite hacer búsquedas por múltiples ámbitos geográficos, por rango temporal, por texto libre o por un subconjunto de magnitudes, realizar vistas previas de los datos, y añadir los conjuntos de datos que se crean interesantes a un “carrito” de descargas. En el momento de realizar la descarga de una colección de datos, se le asignará un identificador universal que permitirá referenciarla en eventuales publicaciones, y repetir su descarga en el futuro (de modo que los experimentos publicados sean reproducibles). El portal se apoya en formatos abiertos de uso común en la comunidad científica, como el formato NetCDF para los datos, y en el perfil ISO de CSW, estándar de catalogación y búsqueda propio del ámbito geoespacial. El portal se ha desarrollado partiendo de componentes de software libre existentes, como Thredds Data Server, GeoNetwork Open Source y GeoExt, y su código y documentación quedarán publicados bajo una licencia libre para hacer posible su reutilización en otros proyecto
Resumo:
Currently, many museums, botanic gardens and herbariums keep data of biological collections and using computational tools researchers digitalize and provide access to their data using data portals. The replication of databases in portals can be accomplished through the use of protocols and data schema. However, the implementation of this solution demands a large amount of time, concerning both the transfer of fragments of data and processing data within the portal. With the growth of data digitalization in institutions, this scenario tends to be increasingly exacerbated, making it hard to maintain the records updated on the portals. As an original contribution, this research proposes analysing the data replication process to evaluate the performance of portals. The Inter-American Biodiversity Information Network (IABIN) biodiversity data portal of pollinators was used as a study case, which supports both situations: conventional data replication of records of specimen occurrences and interactions between them. With the results of this research, it is possible to simulate a situation before its implementation, thus predicting the performance of replication operations. Additionally, these results may contribute to future improvements to this process, in order to decrease the time required to make the data available in portals. © Rinton Press.
Resumo:
Includes bibliography
Resumo:
Includes bibliography