975 resultados para Product safety
Resumo:
This report provides an evaluation of the current available evidence-base for identification and surveillance of product-related injuries in children in Queensland. While the focal population was children in Queensland, the identification of information needs and data sources for product safety surveillance has applicability nationally for all age groups. The report firstly summarises the data needs of product safety regulators regarding product-related injury in children, describing the current sources of information informing product safety policy and practice, and documenting the priority product surveillance areas affecting children which have been a focus over recent years in Queensland. Health data sources in Queensland which have the potential to inform product safety surveillance initiatives were evaluated in terms of their ability to address the information needs of product safety regulators. Patterns in product-related injuries in children were analysed using routinely available health data to identify areas for future intervention, and the patterns in product-related injuries in children identified in health data were compared to those identified by product safety regulators. Recommendations were made for information system improvements and improved access to and utilisation of health data for more proactive approaches to product safety surveillance in the future.
Resumo:
Background Efficient effective child product safety (PS) responses require data on hazards, injury severity and injury probability. PS responses in Australia largely rely on reports from manufacturers/retailers, other jurisdictions/regulators, or consumers. The extent to which reactive responses reflect actual child injury priorities is unknown. Aims/Objectives/Purpose This research compared PS issues for children identified using data compiled from PS regulatory data and data compiled from health data sources in Queensland, Australia. Methods PS regulatory documents describing issues affecting children in Queensland in 2008–2009 were compiled and analysed to identify frequent products and hazards. Three health data sources (ED, injury surveillance and hospital data) were analysed to identify frequent products and hazards. Results/Outcomes Projectile toys/squeeze toys were the priority products for PS regulators with these toys having the potential to release small parts presenting choking hazards. However, across all health datasets, falls were the most common mechanism of injury, and several of the products identified were not subject to a PS system response. While some incidents may not require a response, a manual review of injury description text identified child poisonings and burns as common mechanisms of injuries in the health data where there was substantial documentation of product-involvement, yet only 10% of PS system responses focused on these two mechanisms combined. Significance/contribution to the field Regulatory data focused on products that fail compliance checks with ‘potential’ to cause harm, and health data identified actual harm, resulting in different prioritisation of products/mechanisms. Work is needed to better integrate health data into PS responses in Australia.
Resumo:
Background The implementation of the Australian Consumer Law in 2011 highlighted the need for better use of injury data to improve the effectiveness and responsiveness of product safety (PS) initiatives. In the PS system, resources are allocated to different priority issues using risk assessment tools. The rapid exchange of information (RAPEX) tool to prioritise hazards, developed by the European Commission, is currently being adopted in Australia. Injury data is required as a basic input to the RAPEX tool in the risk assessment process. One of the challenges in utilising injury data in the PS system is the complexity of translating detailed clinical coded data into broad categories such as those used in the RAPEX tool. Aims This study aims to translate hospital burns data into a simplified format by mapping the International Statistical Classification of Disease and Related Health Problems (Tenth Revision) Australian Modification (ICD-10-AM) burn codes into RAPEX severity rankings, using these rankings to identify priority areas in childhood product-related burns data. Methods ICD-10-AM burn codes were mapped into four levels of severity using the RAPEX guide table by assigning rankings from 1-4, in order of increasing severity. RAPEX rankings were determined by the thickness and surface area of the burn (BSA) with information extracted from the fourth character of T20-T30 codes for burn thickness, and the fourth and fifth characters of T31 codes for the BSA. Following the mapping process, secondary data analysis of 2008-2010 Queensland Hospital Admitted Patient Data Collection (QHAPDC) paediatric data was conducted to identify priority areas in product-related burns. Results The application of RAPEX rankings in QHAPDC burn data showed approximately 70% of paediatric burns in Queensland hospitals were categorised under RAPEX levels 1 and 2, 25% under RAPEX 3 and 4, with the remaining 5% unclassifiable. In the PS system, prioritisations are made to issues categorised under RAPEX levels 3 and 4. Analysis of external cause codes within these levels showed that flammable materials (for children aged 10-15yo) and hot substances (for children aged <2yo) were the most frequently identified products. Discussion and conclusions The mapping of ICD-10-AM burn codes into RAPEX rankings showed a favourable degree of compatibility between both classification systems, suggesting that ICD-10-AM coded burn data can be simplified to more effectively support PS initiatives. Additionally, the secondary data analysis showed that only 25% of all admitted burn cases in Queensland were severe enough to trigger a PS response.
Resumo:
Background The implementation of the Australian Consumer Law in 2011 highlighted the need for better use of injury data to improve the effectiveness and responsiveness of product safety (PS) initiatives. In the PS system, resources are allocated to different priority issues using risk assessment tools. The rapid exchange of information (RAPEX) tool to prioritise hazards, developed by the European Commission, is currently being adopted in Australia. Injury data is required as a basic input to the RAPEX tool in the risk assessment process. One of the challenges in utilising injury data in the PS system is the complexity of translating detailed clinical coded data into broad categories such as those used in the RAPEX tool. Aims This study aims to translate hospital burns data into a simplified format by mapping the International Statistical Classification of Disease and Related Health Problems (Tenth Revision) Australian Modification (ICD-10-AM) burn codes into RAPEX severity rankings, using these rankings to identify priority areas in childhood product-related burns data. Methods ICD-10-AM burn codes were mapped into four levels of severity using the RAPEX guide table by assigning rankings from 1-4, in order of increasing severity. RAPEX rankings were determined by the thickness and surface area of the burn (BSA) with information extracted from the fourth character of T20-T30 codes for burn thickness, and the fourth and fifth characters of T31 codes for the BSA. Following the mapping process, secondary data analysis of 2008-2010 Queensland Hospital Admitted Patient Data Collection (QHAPDC) paediatric data was conducted to identify priority areas in product-related burns. Results The application of RAPEX rankings in QHAPDC burn data showed approximately 70% of paediatric burns in Queensland hospitals were categorised under RAPEX levels 1 and 2, 25% under RAPEX 3 and 4, with the remaining 5% unclassifiable. In the PS system, prioritisations are made to issues categorised under RAPEX levels 3 and 4. Analysis of external cause codes within these levels showed that flammable materials (for children aged 10-15yo) and hot substances (for children aged <2yo) were the most frequently identified products. Discussion and conclusions The mapping of ICD-10-AM burn codes into RAPEX rankings showed a favourable degree of compatibility between both classification systems, suggesting that ICD-10-AM coded burn data can be simplified to more effectively support PS initiatives. Additionally, the secondary data analysis showed that only 25% of all admitted burn cases in Queensland were severe enough to trigger a PS response.
Developing and evaluating approaches for utilising injury data to support product safety initiatives
Resumo:
With increasing concern about consumer product-related injuries in Australia, product safety regulators need evidence-based research to understand risks and patterns to inform their decision making. This study analysed paediatric injury data to identify and quantify product-related injuries in children to inform product safety prioritisation. This study provides information on novel techniques for interrogating health data to identify trends and patterns in product-related injuries to inform strategic directions in this growing area of concern.
Resumo:
Mode of access: Internet.
Resumo:
"November 1986."
Resumo:
Cover title.
Resumo:
Safety enforcement practitioners within Europe and marketers, designers or manufacturers of consumer products need to determine compliance with the legal test of "reasonable safety" for consumer goods, to reduce the "risks" of injury to the minimum. To enable freedom of movement of products, a method for safety appraisal is required for use as an "expert" system of hazard analysis by non-experts in safety testing of consumer goods for implementation consistently throughout Europe. Safety testing approaches and the concept of risk assessment and hazard analysis are reviewed in developing a model for appraising consumer product safety which seeks to integrate the human factors contribution of risk assessment, hazard perception, and information processing. The model develops a system of hazard identification, hazard analysis and risk assessment which can be applied to a wide range of consumer products through use of a series of systematic checklists and matrices and applies alternative numerical and graphical methods for calculating a final product safety risk assessment score. It is then applied in its pilot form by selected "volunteer" Trading Standards Departments to a sample of consumer products. A series of questionnaires is used to select participating Trading Standards Departments, to explore the contribution of potential subjective influences, to establish views regarding the usability and reliability of the model and any preferences for the risk assessment scoring system used. The outcome of the two stage hazard analysis and risk assessment process is considered to determine consistency in results of hazard analysis, final decisions regarding the safety of the sample product and to determine any correlation in the decisions made using the model and alternative scoring methods of risk assessment. The research also identifies a number of opportunities for future work, and indicates a number of areas where further work has already begun.
Resumo:
This report presents a snapshot from work which was funded by the Queensland Injury Prevention Council in 2010-11 titled “Feasibility of Using Health Data Sources to Inform Product Safety Surveillance in Queensland children”. The project provided an evaluation of the current available evidence-base for identification and surveillance of product-related injuries in children in Queensland and Australia. A comprehensive 300 page report was produced (available at: http://eprints.qut.edu.au/46518/) and a series of recommendations were made which proposed: improvements in the product safety data system, increased utilisation of health data for proactive and reactive surveillance, enhanced collaboration between the health sector and the product safety sector, and improved ability of health data to meet the needs of product safety surveillance. At the conclusion of the project, a Consumer Product Injury Research Advisory group (CPIRAG) was established as a working party to the Queensland Injury Prevention Council (QIPC), to prioritise and advance these recommendations and to work collaboratively with key stakeholders to promote the role of injury data to support product safety policy decisions at the Queensland and national level. This group continues to meet monthly and is comprised of the organisations represented on the second page of this report. One of the key priorities of the CPIRAG group for 2012 was to produce a snapshot report to highlight problem areas for potential action arising out of the larger report. Subsequent funding to write this snapshot report was provided by the Institute for Health and Biomedical Innovation, Injury Prevention and Rehabilitation Domain at QUT in 2012. This work was undertaken by Dr Kirsten McKenzie and researchers from QUT's Centre for Accident Research and Road Safety - Queensland. This snapshot report provides an evidence base for potential further action on a range of children’s products that are significantly represented in injury data. Further information regarding injury hazards, safety advice and regulatory responses are available on the Office of Fair Trading (OFT) Queensland website and the Product Safety Australia websites. Links to these resources are provided for each product reviewed.
Resumo:
- Objective To explore the potential for using a basic text search of routine emergency department data to identify product-related injury in infants and to compare the patterns from routine ED data and specialised injury surveillance data. - Methods Data was sourced from the Emergency Department Information System (EDIS) and the Queensland Injury Surveillance Unit (QISU) for all injured infants between 2009 and 2011. A basic text search was developed to identify the top five infant products in QISU. Sensitivity, specificity, and positive predictive value were calculated and a refined search was used with EDIS. Results were manually reviewed to assess validity. Descriptive analysis was conducted to examine patterns between datasets. - Results The basic text search for all products showed high sensitivity and specificity, and most searches showed high positive predictive value. EDIS patterns were similar to QISU patterns with strikingly similar month-of-age injury peaks, admission proportions and types of injuries. - Conclusions This study demonstrated a capacity to identify a sample of valid cases of product-related injuries for specified products using simple text searching of routine ED data. - Implications As the capacity for large datasets grows and the capability to reliably mine text improves, opportunities for expanded sources of injury surveillance data increase. This will ultimately assist stakeholders such as consumer product safety regulators and child safety advocates to appropriately target prevention initiatives.