167 resultados para Problemado Caixeiro Viajante Assimétrico


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Combinatorial Optimization is a basic area to companies who look for competitive advantages in the diverse productive sectors and the Assimetric Travelling Salesman Problem, which one classifies as one of the most important problems of this area, for being a problem of the NP-hard class and for possessing diverse practical applications, has increased interest of researchers in the development of metaheuristics each more efficient to assist in its resolution, as it is the case of Memetic Algorithms, which is a evolutionary algorithms that it is used of the genetic operation in combination with a local search procedure. This work explores the technique of Viral Infection in one Memetic Algorithms where the infection substitutes the mutation operator for obtaining a fast evolution or extinguishing of species (KANOH et al, 1996) providing a form of acceleration and improvement of the solution . For this it developed four variants of Viral Infection applied in the Memetic Algorithms for resolution of the Assimetric Travelling Salesman Problem where the agent and the virus pass for a symbiosis process which favored the attainment of a hybrid evolutionary algorithms and computational viable

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present essay shows strategies of improvement in a well succeded evolutionary metaheuristic to solve the Asymmetric Traveling Salesman Problem. Such steps consist in a Memetic Algorithm projected mainly to this problem. Basically this improvement applied optimizing techniques known as Path-Relinking and Vocabulary Building. Furthermore, this last one has being used in two different ways, in order to evaluate the effects of the improvement on the evolutionary metaheuristic. These methods were implemented in C++ code and the experiments were done under instances at TSPLIB library, being possible to observe that the procedures purposed reached success on the tests done

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle Swarm Optimization is a metaheuristic that arose in order to simulate the behavior of a number of birds in flight, with its random movement locally, but globally determined. This technique has been widely used to address non-liner continuous problems and yet little explored in discrete problems. This paper presents the operation of this metaheuristic, and propose strategies for implementation of optimization discret problems as form of execution parallel as sequential. The computational experiments were performed to instances of the TSP, selected in the library TSPLIB contenct to 3038 nodes, showing the improvement of performance of parallel methods for their sequential versions, in executation time and results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The decrease in crime is one of the core issues that cause concern in society today. This study aims to propose improvements to public safety from the choice of points to the location of police units, ie the points which support the car and the police. For this, three models were developed in order to assist decision making regarding the best placement of these bases. The Model of Police Units Routing has the intention to analyze the current configuration of a given region and develop optimal routes for round preventative. The Model of Allocation and Routing for New Police Units (MARNUP) used the model of facility location called p-median weighted and traveling salesman problem (TSP) combined aiming an ideal setting for regions that do not yet have support points or to assess how far the distribution is present in relation to that found in solution. The Model Redefinition and Routing Unit Police (MRRUP) seek to change the current positioning taking into account the budgetary constraints of the decision maker. To verify the applicability of these models we used data from 602 points to instances of police command that is responsible for the capital city of Natal. The city currently has 31 police units for 36 of these 19 districts and police have some assistance. This reality can lead to higher costs and higher response times for answering emergency calls. The results of the models showed that in an ideal situation it is possible to define a distance of 500 km/round, whereas in this 900 km are covered by approximately round. However, a change from three-point lead reduced to 700 km / round which represents a decrease of 22% in the route. This reduction should help improve response time to emergency care, improving the level of service provided by the increase of solved cases, reducing police shifts and routing preventive patrols

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problems of combinatory optimization have involved a large number of researchers in search of approximative solutions for them, since it is generally accepted that they are unsolvable in polynomial time. Initially, these solutions were focused on heuristics. Currently, metaheuristics are used more for this task, especially those based on evolutionary algorithms. The two main contributions of this work are: the creation of what is called an -Operon- heuristic, for the construction of the information chains necessary for the implementation of transgenetic (evolutionary) algorithms, mainly using statistical methodology - the Cluster Analysis and the Principal Component Analysis; and the utilization of statistical analyses that are adequate for the evaluation of the performance of the algorithms that are developed to solve these problems. The aim of the Operon is to construct good quality dynamic information chains to promote an -intelligent- search in the space of solutions. The Traveling Salesman Problem (TSP) is intended for applications based on a transgenetic algorithmic known as ProtoG. A strategy is also proposed for the renovation of part of the chromosome population indicated by adopting a minimum limit in the coefficient of variation of the adequation function of the individuals, with calculations based on the population. Statistical methodology is used for the evaluation of the performance of four algorithms, as follows: the proposed ProtoG, two memetic algorithms and a Simulated Annealing algorithm. Three performance analyses of these algorithms are proposed. The first is accomplished through the Logistic Regression, based on the probability of finding an optimal solution for a TSP instance by the algorithm being tested. The second is accomplished through Survival Analysis, based on a probability of the time observed for its execution until an optimal solution is achieved. The third is accomplished by means of a non-parametric Analysis of Variance, considering the Percent Error of the Solution (PES) obtained by the percentage in which the solution found exceeds the best solution available in the literature. Six experiments have been conducted applied to sixty-one instances of Euclidean TSP with sizes of up to 1,655 cities. The first two experiments deal with the adjustments of four parameters used in the ProtoG algorithm in an attempt to improve its performance. The last four have been undertaken to evaluate the performance of the ProtoG in comparison to the three algorithms adopted. For these sixty-one instances, it has been concluded on the grounds of statistical tests that there is evidence that the ProtoG performs better than these three algorithms in fifty instances. In addition, for the thirty-six instances considered in the last three trials in which the performance of the algorithms was evaluated through PES, it was observed that the PES average obtained with the ProtoG was less than 1% in almost half of these instances, having reached the greatest average for one instance of 1,173 cities, with an PES average equal to 3.52%. Therefore, the ProtoG can be considered a competitive algorithm for solving the TSP, since it is not rare in the literature find PESs averages greater than 10% to be reported for instances of this size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metaheuristics techiniques are known to solve optimization problems classified as NP-complete and are successful in obtaining good quality solutions. They use non-deterministic approaches to generate solutions that are close to the optimal, without the guarantee of finding the global optimum. Motivated by the difficulties in the resolution of these problems, this work proposes the development of parallel hybrid methods using the reinforcement learning, the metaheuristics GRASP and Genetic Algorithms. With the use of these techniques, we aim to contribute to improved efficiency in obtaining efficient solutions. In this case, instead of using the Q-learning algorithm by reinforcement learning, just as a technique for generating the initial solutions of metaheuristics, we use it in a cooperative and competitive approach with the Genetic Algorithm and GRASP, in an parallel implementation. In this context, was possible to verify that the implementations in this study showed satisfactory results, in both strategies, that is, in cooperation and competition between them and the cooperation and competition between groups. In some instances were found the global optimum, in others theses implementations reach close to it. In this sense was an analyze of the performance for this proposed approach was done and it shows a good performance on the requeriments that prove the efficiency and speedup (gain in speed with the parallel processing) of the implementations performed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Car Rental Salesman Problem (CaRS) is a variant of the classical Traveling Salesman Problem which was not described in the literature where a tour of visits can be decomposed into contiguous paths that may be performed in different rental cars. The aim is to determine the Hamiltonian cycle that results in a final minimum cost, considering the cost of the route added to the cost of an expected penalty paid for each exchange of vehicles on the route. This penalty is due to the return of the car dropped to the base. This paper introduces the general problem and illustrates some examples, also featuring some of its associated variants. An overview of the complexity of this combinatorial problem is also outlined, to justify their classification in the NPhard class. A database of instances for the problem is presented, describing the methodology of its constitution. The presented problem is also the subject of a study based on experimental algorithmic implementation of six metaheuristic solutions, representing adaptations of the best of state-of-the-art heuristic programming. New neighborhoods, construction procedures, search operators, evolutionary agents, cooperation by multi-pheromone are created for this problem. Furtermore, computational experiments and comparative performance tests are conducted on a sample of 60 instances of the created database, aiming to offer a algorithm with an efficient solution for this problem. These results will illustrate the best performance reached by the transgenetic algorithm in all instances of the dataset

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to great difficulty of accurate solution of Combinatorial Optimization Problems, some heuristic methods have been developed and during many years, the analysis of performance of these approaches was not carried through in a systematic way. The proposal of this work is to make a statistical analysis of heuristic approaches to the Traveling Salesman Problem (TSP). The focus of the analysis is to evaluate the performance of each approach in relation to the necessary computational time until the attainment of the optimal solution for one determined instance of the TSP. Survival Analysis, assisted by methods for the hypothesis test of the equality between survival functions was used. The evaluated approaches were divided in three classes: Lin-Kernighan Algorithms, Evolutionary Algorithms and Particle Swarm Optimization. Beyond those approaches, it was enclosed in the analysis, a memetic algorithm (for symmetric and asymmetric TSP instances) that utilizes the Lin-Kernighan heuristics as its local search procedure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Traveling Purchaser Problem is a variant of the Traveling Salesman Problem, where there is a set of markets and a set of products. Each product is available on a subset of markets and its unit cost depends on the market where it is available. The objective is to buy all the products, departing and returning to a domicile, at the least possible cost defined as the summation of the weights of the edges in the tour and the cost paid to acquire the products. A Transgenetic Algorithm, an evolutionary algorithm with basis on endosymbiosis, is applied to the Capacited and Uncapacited versions of this problem. Evolution in Transgenetic Algorithms is simulated with the interaction and information sharing between populations of individuals from distinct species. The computational results show that this is a very effective approach for the TPP regarding solution quality and runtime. Seventeen and nine new best results are presented for instances of the capacited and uncapacited versions, respectively

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.