997 resultados para Problem Decomposition


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Environmental management is a complex task. The amount and heterogeneity of the data needed for an environmental decision making tool is overwhelming without adequate database systems and innovative methodologies. As far as data management, data interaction and data processing is concerned we here propose the use of a Geographical Information System (GIS) whilst for the decision making we suggest a Multi-Agent System (MAS) architecture. With the adoption of a GIS we hope to provide a complementary coexistence between heterogeneous data sets, a correct data structure, a good storage capacity and a friendly user’s interface. By choosing a distributed architecture such as a Multi-Agent System, where each agent is a semi-autonomous Expert System with the necessary skills to cooperate with the others in order to solve a given task, we hope to ensure a dynamic problem decomposition and to achieve a better performance compared with standard monolithical architectures. Finally, and in view of the partial, imprecise, and ever changing character of information available for decision making, Belief Revision capabilities are added to the system. Our aim is to present and discuss an intelligent environmental management system capable of suggesting the more appropriate land-use actions based on the existing spatial and non-spatial constraints.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a new multi-objective estimation of distribution algorithm (EDA) based on joint modeling of objectives and variables. This EDA uses the multi-dimensional Bayesian network as its probabilistic model. In this way it can capture the dependencies between objectives, variables and objectives, as well as the dependencies learnt between variables in other Bayesian network-based EDAs. This model leads to a problem decomposition that helps the proposed algorithm to find better trade-off solutions to the multi-objective problem. In addition to Pareto set approximation, the algorithm is also able to estimate the structure of the multi-objective problem. To apply the algorithm to many-objective problems, the algorithm includes four different ranking methods proposed in the literature for this purpose. The algorithm is applied to the set of walking fish group (WFG) problems, and its optimization performance is compared with an evolutionary algorithm and another multi-objective EDA. The experimental results show that the proposed algorithm performs significantly better on many of the problems and for different objective space dimensions, and achieves comparable results on some compared with the other algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper applies two methods of mathematical decomposition to carry out an optimal reactive power flow (ORPF) in a coordinated decentralized way in the context of an interconnected multi-area power system. The first method is based on an augmented Lagrangian approach using the auxiliary problem principle (APP). The second method uses a decomposition technique based on the Karush-Kuhn-Tucker (KKT) first-order optimality conditions. The viability of each method to be used in the decomposition of multi-area ORPF is studied and the corresponding mathematical models are presented. The IEEE RTS-96, the IEEE 118-bus test systems and a 9-bus didactic system are used in order to show the operation and effectiveness of the decomposition methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a cluster partitioning technique to calculate improved upper bounds to the optimal solution of maximal covering location problems. Given a covering distance, a graph is built considering as vertices the potential facility locations, and with an edge connecting each pair of facilities that attend a same client. Coupling constraints, corresponding to some edges of this graph, are identified and relaxed in the Lagrangean way, resulting in disconnected subgraphs representing smaller subproblems that are computationally easier to solve by exact methods. The proposed technique is compared to the classical approach, using real data and instances from the available literature. © 2010 Edson Luiz França Senne et al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper a framework based on the decomposition of the first-order optimality conditions is described and applied to solve the Probabilistic Power Flow (PPF) problem in a coordinated but decentralized way in the context of multi-area power systems. The purpose of the decomposition framework is to solve the problem through a process of solving smaller subproblems, associated with each area of the power system, iteratively. This strategy allows the probabilistic analysis of the variables of interest, in a particular area, without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. An efficient method for probabilistic analysis, considering uncertainty in n system loads, is applied. The proposal is to use a particular case of the point estimate method, known as Two-Point Estimate Method (TPM), rather than the traditional approach based on Monte Carlo simulation. The main feature of the TPM is that it only requires resolve 2n power flows for to obtain the behavior of any random variable. An iterative coordination algorithm between areas is also presented. This algorithm solves the Multi-Area PPF problem in a decentralized way, ensures the independent operation of each area and integrates the decomposition framework and the TPM appropriately. The IEEE RTS-96 system is used in order to show the operation and effectiveness of the proposed approach and the Monte Carlo simulations are used to validation of the results. © 2011 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a general scheme for generating extra cuts during the execution of a Benders decomposition algorithm is presented. These cuts are based on feasible and infeasible master problem solutions generated by means of a heuristic. This article includes general guidelines and a case study with a fixed charge network design problem. Computational tests with instances of this problem show the efficiency of the strategy. The most important aspect of the proposed ideas is their generality, which allows them to be used in virtually any Benders decomposition implementation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The asymmetric cipher protocol based on decomposition problem in matrix semiring M over semiring of natural numbers N is presented. The security parameters are defined and preliminary security analysis is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A G-design of order n is a pair (P,B) where P is the vertex set of the complete graph K-n and B is an edge-disjoint decomposition of K-n into copies of the simple graph G. Following design terminology, we call these copies ''blocks''. Here K-4 - e denotes the complete graph K-4 with one edge removed. It is well-known that a K-4 - e design of order n exists if and only if n = 0 or 1 (mod 5), n greater than or equal to 6. The intersection problem here asks for which k is it possible to find two K-4 - e designs (P,B-1) and (P,B-2) of order n, with \B-1 boolean AND B-2\ = k, that is, with precisely k common blocks. Here we completely solve this intersection problem for K-4 - e designs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An m-cycle system of order upsilon is a partition of the edge-set of a complete graph of order upsilon into m-cycles. The mu -way intersection problem for m-cycle systems involves taking mu systems, based on the same vertex set, and determining the possible number of cycles which can be common to all mu systems. General results for arbitrary m are obtained, and detailed intersection values for (mu, m) = (3, 4), (4, 5),(4, 6), (4, 7), (8, 8), (8, 9). (For the case (mu, m)= (2, m), see Billington (J. Combin. Des. 1 (1993) 435); for the case (Cc,m)=(3,3), see Milici and Quattrochi (Ars Combin. A 24 (1987) 175. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid-solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently bench-marked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.