930 resultados para Probability of detection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult owing to species biology and behavioural characteristics. The design of robust sampling programmes should be based on an underlying statistical distribution that is sufficiently flexible to capture variations in the spatial distribution of the target species. Results: Comparisons are made of the accuracy of four probability-of-detection sampling models - the negative binomial model,1 the Poisson model,1 the double logarithmic model2 and the compound model3 - for detection of insects over a broad range of insect densities. Although the double log and negative binomial models performed well under specific conditions, it is shown that, of the four models examined, the compound model performed the best over a broad range of insect spatial distributions and densities. In particular, this model predicted well the number of samples required when insect density was high and clumped within experimental storages. Conclusions: This paper reinforces the need for effective sampling programs designed to detect insects over a broad range of spatial distributions. The compound model is robust over a broad range of insect densities and leads to substantial improvement in detection probabilities within highly variable systems such as grain storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time-of-detection method for aural avian point counts is a new method of estimating abundance, allowing for uncertain probability of detection. The method has been specifically designed to allow for variation in singing rates of birds. It involves dividing the time interval of the point count into several subintervals and recording the detection history of the subintervals when each bird sings. The method can be viewed as generating data equivalent to closed capture–recapture information. The method is different from the distance and multiple-observer methods in that it is not required that all the birds sing during the point count. As this method is new and there is some concern as to how well individual birds can be followed, we carried out a field test of the method using simulated known populations of singing birds, using a laptop computer to send signals to audio stations distributed around a point. The system mimics actual aural avian point counts, but also allows us to know the size and spatial distribution of the populations we are sampling. Fifty 8-min point counts (broken into four 2-min intervals) using eight species of birds were simulated. Singing rate of an individual bird of a species was simulated following a Markovian process (singing bouts followed by periods of silence), which we felt was more realistic than a truly random process. The main emphasis of our paper is to compare results from species singing at (high and low) homogenous rates per interval with those singing at (high and low) heterogeneous rates. Population size was estimated accurately for the species simulated, with a high homogeneous probability of singing. Populations of simulated species with lower but homogeneous singing probabilities were somewhat underestimated. Populations of species simulated with heterogeneous singing probabilities were substantially underestimated. Underestimation was caused by both the very low detection probabilities of all distant individuals and by individuals with low singing rates also having very low detection probabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectrum sensing optimisation techniques maximise the efficiency of spectrum sensing while satisfying a number of constraints. Many optimisation models consider the possibility of the primary user changing activity state during the secondary user's transmission period. However, most ignore the possibility of activity change during the sensing period. The observed primary user signal during sensing can exhibit a duty cycle which has been shown to severely degrade detection performance. This paper shows that (a) the probability of state change during sensing cannot be neglected and (b) the true detection performance obtained when incorporating the duty cycle of the primary user signal can deviate significantly from the results expected with the assumption of no such duty cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the population pharmacokinetics of an acepromazine (ACP) metabolite (2-(1-hydroxyethyl)promazine) (HEPS) in horses for the estimation of likely detection times in plasma and urine. Acepromazine (30 mg) was administered to 12 horses, and blood and urine samples were taken at frequent intervals for chemical analysis. A Bayesian hierarchical model was fitted to describe concentration-time data and cumulative urine amounts for HEPS. The metabolite HEPS was modelled separately from the parent ACP as the half-life of the parent was considerably less than that of the metabolite. The clearance ($Cl/F_{PM}$) and volume of distribution ($V/F_{PM}$), scaled by the fraction of parent converted to metabolite, were estimated as 769 L/h and 6874 L, respectively. For a typical horse in the study, after receiving 30 mg of ACP, the upper limit of the detection time was 35 hours in plasma and 100 hours in urine, assuming an arbitrary limit of detection of 1 $\mu$g/L, and a small ($\approx 0.01$) probability of detection. The model derived allowed the probability of detection to be estimated at the population level. This analysis was conducted on data collected from only 12 horses, but we assume that this is representative of the wider population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Old World screwworm fly (OWS), Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), is a myiasis-causing blowfly of major concern for both animals and humans. Surveillance traps are used in several countries for early detection of incursions and to monitor control strategies. Examination of surveillance trap catches is time-consuming and is complicated by the presence of morphologically similar flies that are difficult to differentiate from Ch. bezziana, especially when the condition of specimens is poor. A molecular-based method to confirm or refute the presence of Ch. bezziana in trap catches would greatly simplify monitoring programmes. A species-specific real-time polymerase chain reaction (PCR) assay was designed to target the ribosomal DNA internal transcribed spacer 1 (rDNA ITS1) of Ch. bezziana. The assay uses both species-specific primers and an OWS-specific Taqman MGB probe. Specificity was confirmed against morphologically similar and related Chrysomya and Cochliomyia species. An optimal extraction protocol was developed to process trap catches of up to 1000 flies and the assay is sensitive enough to detect one Ch. bezziana in a sample of 1000 non-target species. Blind testing of 29 trap catches from Australia and Malaysia detected Ch. bezziana with 100% accuracy. The probability of detecting OWS in a trap catch of 50 000 flies when the OWS population prevalence is low (one in 1000 flies) is 63.6% for one extraction. For three extractions (3000 flies), the probability of detection increases to 95.5%. The real-time PCR assay, used in conjunction with morphology, will greatly increase screening capabilities in surveillance areas where OWS prevalence is low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ninety-one patients were studied serially for chimeric status following allogeneic stem cell transplantation (SCT) for severe aplastic anaemia (SAA) or Fanconi Anaemia (FA). Short tandem repeat polymerase chain reaction (STR-PCR) was used to stratify patients into five groups: (A) complete donor chimeras (n = 39), (B) transient mixed chimeras (n = 15) (C) stable mixed chimeras (n = 18), (D) progressive mixed chimeras (n = 14) (E) recipient chimeras with early graft rejection (n = 5). As serial sampling was not possible in Group E, serial chimerism results for 86 patients were available for analysis. The following factors were analysed for association with chimeric status: age, sex match, donor type, aetiology of aplasia, source of stem cells, number of cells engrafted, conditioning regimen, graft-versus-host disease (GvHD) prophylaxis, occurrence of acute and chronic GvHD and survival. Progressive mixed chimeras (PMCs) were at high risk of late graft rejection (n = 10, P <0.0001). Seven of these patients lost their graft during withdrawal of immunosuppressive therapy. STR-PCR indicated an inverse correlation between detection of recipient cells post-SCT and occurrence of acute GvHD (P = 0.008). PMC was a bad prognostic indicator of survival (P = 0.003). Monitoring of chimeric status during cyclosporin withdrawal may facilitate therapeutic intervention to prevent late graft rejection in patients transplanted for SAA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1991, Bryant and Eckard estimated the annual probability that a cartel would be detected by the US Federal authorities, conditional on being detected, to be at most between 13 % and 17 %. 15 years later, we estimated the same probability over a European sample and we found an annual probability that falls between 12.9 % and 13.3 %. We also develop a detection model to clarify this probability. Our estimate is based on detection durations, calculated from data reported for all the cartels convicted by the European Commission from 1969 to the present date, and a statistical birth and death process model describing the onset and detection of cartels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This correspondence considers block detection for blind wireless digital transmission. At high signal-to-noise ratio (SNR), block detection errors are primarily due to the received sequence having multiple possible decoded sequences with the same likelihood. We derive analytic expressions for the probability of detection ambiguity written in terms of a Dedekind zeta function, in the zero noise case with large constellations. Expressions are also provided for finite constellations, which can be evaluated efficiently, independent of the block length. Simulations demonstrate that the analytically derived error floors exist at high SNR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the authors propose simple methods to evaluate the achievable rates and outage probability of a cognitive radio (CR) link that takes into account the imperfectness of spectrum sensing. In the considered system, the CR transmitter and receiver correlatively sense and dynamically exploit the spectrum pool via dynamic frequency hopping. Under imperfect spectrum sensing, false-alarm and miss-detection occur which cause impulsive interference emerged from collisions due to the simultaneous spectrum access of primary and cognitive users. That makes it very challenging to evaluate the achievable rates. By first examining the static link where the channel is assumed to be constant over time, they show that the achievable rate using a Gaussian input can be calculated accurately through a simple series representation. In the second part of this study, they extend the calculation of the achievable rate to wireless fading environments. To take into account the effect of fading, they introduce a piece-wise linear curve fitting-based method to approximate the instantaneous achievable rate curve as a combination of linear segments. It is then demonstrated that the ergodic achievable rate in fast fading and the outage probability in slow fading can be calculated to achieve any given accuracy level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surveillance for invasive non-indigenous species (NIS) is an integral part of a quarantine system. Estimating the efficiency of a surveillance strategy relies on many uncertain parameters estimated by experts, such as the efficiency of its components in face of the specific NIS, the ability of the NIS to inhabit different environments, and so on. Due to the importance of detecting an invasive NIS within a critical period of time, it is crucial that these uncertainties be accounted for in the design of the surveillance system. We formulate a detection model that takes into account, in addition to structured sampling for incursive NIS, incidental detection by untrained workers. We use info-gap theory for satisficing (not minimizing) the probability of detection, while at the same time maximizing the robustness to uncertainty. We demonstrate the trade-off between robustness to uncertainty, and an increase in the required probability of detection. An empirical example based on the detection of Pheidole megacephala on Barrow Island demonstrates the use of info-gap analysis to select a surveillance strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectrum sensing is considered to be one of the most important tasks in cognitive radio. Many sensing detectors have been proposed in the literature, with the common assumption that the primary user is either fully present or completely absent within the window of observation. In reality, there are scenarios where the primary user signal only occupies a fraction of the observed window. This paper aims to analyse the effect of the primary user duty cycle on spectrum sensing performance through the analysis of a few common detectors. Simulations show that the probability of detection degrades severely with reduced duty cycle regardless of the detection method. Furthermore we show that reducing the duty cycle has a greater degradation on performance than lowering the signal strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The presence of insects in stored grains is a significant problem for grain farmers, bulk grain handlers and distributors worldwide. Inspections of bulk grain commodities is essential to detect pests and therefore to reduce the risk of their presence in exported goods. It has been well documented that insect pests cluster in response to factors such as microclimatic conditions within bulk grain. Statistical sampling methodologies for grains, however, have typically considered pests and pathogens to be homogeneously distributed throughout grain commodities. In this paper we demonstrate a sampling methodology that accounts for the heterogeneous distribution of insects in bulk grains. RESULTS: We show that failure to account for the heterogeneous distribution of pests may lead to overestimates of the capacity for a sampling program to detect insects in bulk grains. Our results indicate the importance of the proportion of grain that is infested in addition to the density of pests within the infested grain. We also demonstrate that the probability of detecting pests in bulk grains increases as the number of sub-samples increases, even when the total volume or mass of grain sampled remains constant. CONCLUSION: This study demonstrates the importance of considering an appropriate biological model when developing sampling methodologies for insect pests. Accounting for a heterogeneous distribution of pests leads to a considerable improvement in the detection of pests over traditional sampling models.