471 resultados para Probabilité de ruine


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Risk theory has been a very active research area over the last decades. The main objectives of the theory are to find adequate stochastic processes which can model the surplus of a (non-life) insurance company and to analyze the risk related quantities such as ruin time, ruin probability, expected discounted penalty function and expected discounted dividend/tax payments. The study of these ruin related quantities provides crucial information for actuaries and decision makers. This thesis consists of the study of four different insurance risk models which are essentially related. The ruin and related quantities are investigated by using different techniques, resulting in explicit or asymptotic expressions for the ruin time, the ruin probability, the expected discounted penalty function and the expected discounted tax payments. - La recherche en théorie du risque a été très dynamique au cours des dernières décennies. D'un point de vue théorique, les principaux objectifs sont de trouver des processus stochastiques adéquats permettant de modéliser le surplus d'une compagnie d'assurance non vie et d'analyser les mesures de risque, notamment le temps de ruine, la probabilité de ruine, l'espérance de la valeur actuelle de la fonction de pénalité et l'espérance de la valeur actuelle des dividendes et taxes. L'étude de ces mesures associées à la ruine fournit des informations cruciales pour les actuaires et les décideurs. Cette thèse consiste en l'étude des quatre différents modèles de risque d'assurance qui sont essentiellement liés. La ruine et les mesures qui y sont associées sont examinées à l'aide de différentes techniques, ce qui permet d'induire des expressions explicites ou asymptotiques du temps de ruine, de la probabilité de ruine, de l'espérance de la valeur actuelle de la fonction de pénalité et l'espérance de la valeur actuelle des dividendes et taxes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On présente une nouvelle approche de simulation pour la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine, pour des modèles de risque déterminés par des subordinateurs de Lévy. Cette approche s'inspire de la décomposition "Ladder height" pour la probabilité de ruine dans le Modèle Classique. Ce modèle, déterminé par un processus de Poisson composé, est un cas particulier du modèle plus général déterminé par un subordinateur, pour lequel la décomposition "Ladder height" de la probabilité de ruine s'applique aussi. La Fonction de Pénalité Escomptée, encore appelée Fonction Gerber-Shiu (Fonction GS), a apporté une approche unificatrice dans l'étude des quantités liées à l'événement de la ruine été introduite. La probabilité de ruine et la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine sont des cas particuliers de la Fonction GS. On retrouve, dans la littérature, des expressions pour exprimer ces deux quantités, mais elles sont difficilement exploitables de par leurs formes de séries infinies de convolutions sans formes analytiques fermées. Cependant, puisqu'elles sont dérivées de la Fonction GS, les expressions pour les deux quantités partagent une certaine ressemblance qui nous permet de nous inspirer de la décomposition "Ladder height" de la probabilité de ruine pour dériver une approche de simulation pour cette fonction de densité conjointe. On présente une introduction détaillée des modèles de risque que nous étudions dans ce mémoire et pour lesquels il est possible de réaliser la simulation. Afin de motiver ce travail, on introduit brièvement le vaste domaine des mesures de risque, afin d'en calculer quelques unes pour ces modèles de risque. Ce travail contribue à une meilleure compréhension du comportement des modèles de risques déterminés par des subordinateurs face à l'éventualité de la ruine, puisqu'il apporte un point de vue numérique absent de la littérature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nous y introduisons une nouvelle classe de distributions bivariées de type Marshall-Olkin, la distribution Erlang bivariée. La transformée de Laplace, les moments et les densités conditionnelles y sont obtenus. Les applications potentielles en assurance-vie et en finance sont prises en considération. Les estimateurs du maximum de vraisemblance des paramètres sont calculés par l'algorithme Espérance-Maximisation. Ensuite, notre projet de recherche est consacré à l'étude des processus de risque multivariés, qui peuvent être utiles dans l'étude des problèmes de la ruine des compagnies d'assurance avec des classes dépendantes. Nous appliquons les résultats de la théorie des processus de Markov déterministes par morceaux afin d'obtenir les martingales exponentielles, nécessaires pour établir des bornes supérieures calculables pour la probabilité de ruine, dont les expressions sont intraitables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cet ouvrage non seulement présente, de façon rigoureuse, les concepts et méthodes statistiques, mais aussi utilise des exemples concrets pour illustrer chaque concept théorique nouvellement introduit. Il présente de façon méticuleuse les notions fondamentales de la théorie des probabilités et de la statistique: bref rappel de l'histoire de la statistique, la statistique descriptive, les distributions discrètes et continues, estimation, tests d'hypothèses, l'analyse de corrélation, l'analyse de régression linéaire simple et multiple, et le modèle d'analyse de variance. Au moyen des exemples et exercices, le lecteur est guidé tout au long de la réalisation du problème. En même temps, l'apprentissage de l'utilisation de Stata se fait progressivement au fil des chapitres. La dernière partie de l'ouvrage propose une introduction à l'utilisation de Stata. Les corrections des exercices figurent à la fin de l'ouvrage, permettant au lecteur de vérifier le niveau de compréhension atteint après chaque étape.