951 resultados para Probabilistic neural network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a recently developed and powerful classification tool, probabilistic neural network was used to distinguish cancer patients from healthy persons according to the levels of nucleosides in human urine. Two datasets (containing 32 and 50 patterns, respectively) were investigated and the total consistency rate obtained was 100% for dataset 1 and 94% for dataset 2. To evaluate the performance of probabilistic neural network, linear discriminant analysis and learning vector quantization network, were also applied to the classification problem. The results showed that the predictive ability of the probabilistic neural network is stronger than the others in this study. Moreover, the recognition rate for dataset 2 can achieve to 100% if combining, these three methods together, which indicated the promising potential of clinical diagnosis by combining different methods. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new probabilistic neural network (PNN) learning algorithm based on forward constrained selection (PNN-FCS) is proposed. An incremental learning scheme is adopted such that at each step, new neurons, one for each class, are selected from the training samples arid the weights of the neurons are estimated so as to minimize the overall misclassification error rate. In this manner, only the most significant training samples are used as the neurons. It is shown by simulation that the resultant networks of PNN-FCS have good classification performance compared to other types of classifiers, but much smaller model sizes than conventional PNN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the idea of an important cluster, a new multi-level probabilistic neural network (MLPNN) is introduced. The MLPNN uses an incremental constructive approach, i.e. it grows level by level. The construction algorithm of the MLPNN is proposed such that the classification accuracy monotonically increases to ensure that the classification accuracy of the MLPNN is higher than or equal to that of the traditional PNN. Numerical examples are included to demonstrate the effectiveness of proposed new approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major problems facing Blast Furnaces is the occurrence of cracks in taphole mud, as the underlying causes are not easily identifiable. The absence of this knowledge makes it difficult the use of conventional techniques for predictability and mitigation. This paper will address the application of Probabilistic Neural Network using the Matlab software as a means to detect and control such cracks. The most relevant BF operational variables were picked through the statistic tool "Principal Component Analysis - PCA." Based upon the selection of these variables a probabilistic neural network was built. A set of BF operational data, consisting of 30 controlling variables, was divided into 2 groups, one of which for network training, and the other one to validate the neural network. The neural network got 98% of the cases right. The results show the effectiveness of this tool for crack prediction in relation to clay intrinsic properties and as a result of the fluctuation in operational variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rocks used as construction aggregate in temperate climates deteriorate to differing degrees because of repeated freezing and thawing. The magnitude of the deterioration depends on the rock's properties. Aggregate, including crushed carbonate rock, is required to have minimum geotechnical qualities before it can be used in asphalt and concrete. In order to reduce chances of premature and expensive repairs, extensive freeze-thaw tests are conducted on potential construction rocks. These tests typically involve 300 freeze-thaw cycles and can take four to five months to complete. Less time consuming tests that (1) predict durability as well as the extended freeze-thaw test or that (2) reduce the number of rocks subject to the extended test, could save considerable amounts of money. Here we use a probabilistic neural network to try and predict durability as determined by the freeze-thaw test using four rock properties measured on 843 limestone samples from the Kansas Department of Transportation. Modified freeze-thaw tests and less time consuming specific gravity (dry), specific gravity (saturated), and modified absorption tests were conducted on each sample. Durability factors of 95 or more as determined from the extensive freeze-thaw tests are viewed as acceptable—rocks with values below 95 are rejected. If only the modified freeze-thaw test is used to predict which rocks are acceptable, about 45% are misclassified. When 421 randomly selected samples and all four standardized and scaled variables were used to train aprobabilistic neural network, the rate of misclassification of 422 independent validation samples dropped to 28%. The network was trained so that each class (group) and each variable had its own coefficient (sigma). In an attempt to reduce errors further, an additional class was added to the training data to predict durability values greater than 84 and less than 98, resulting in only 11% of the samples misclassified. About 43% of the test data was classed by the neural net into the middle group—these rocks should be subject to full freeze-thaw tests. Thus, use of the probabilistic neural network would meanthat the extended test would only need be applied to 43% of the samples, and 11% of the rocks classed as acceptable would fail early.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feeding to milking. Increase in automation is a consequence of increasing farm sizes, the demand for more efficient production and the growth of labour costs. As the level of automation increases, the time that the cattle keeper uses for monitoring animals often decreases. This has created a need for systems for automatically monitoring the health of farm animals. The popularity of milking robots also offers a new and unique possibility to monitor animals in a single confined space up to four times daily. Lameness is a crucial welfare issue in the modern dairy industry. Limb disorders cause serious welfare, health and economic problems especially in loose housing of cattle. Lameness causes losses in milk production and leads to early culling of animals. These costs could be reduced with early identification and treatment. At present, only a few methods for automatically detecting lameness have been developed, and the most common methods used for lameness detection and assessment are various visual locomotion scoring systems. The problem with locomotion scoring is that it needs experience to be conducted properly, it is labour intensive as an on-farm method and the results are subjective. A four balance system for measuring the leg load distribution of dairy cows during milking in order to detect lameness was developed and set up in the University of Helsinki Research farm Suitia. The leg weights of 73 cows were successfully recorded during almost 10,000 robotic milkings over a period of 5 months. The cows were locomotion scored weekly, and the lame cows were inspected clinically for hoof lesions. Unsuccessful measurements, caused by cows standing outside the balances, were removed from the data with a special algorithm, and the mean leg loads and the number of kicks during milking was calculated. In order to develop an expert system to automatically detect lameness cases, a model was needed. A probabilistic neural network (PNN) classifier model was chosen for the task. The data was divided in two parts and 5,074 measurements from 37 cows were used to train the model. The operation of the model was evaluated for its ability to detect lameness in the validating dataset, which had 4,868 measurements from 36 cows. The model was able to classify 96% of the measurements correctly as sound or lame cows, and 100% of the lameness cases in the validation data were identified. The number of measurements causing false alarms was 1.1%. The developed model has the potential to be used for on-farm decision support and can be used in a real-time lameness monitoring system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a study of the effectiveness of a multiple classifier system (MCS) in a medical diagnostic task is described. A hybrid network, based on the integration of a fuzzy ARTMAP and the probabilistic neural network, is employed as the basis of the MCS. Outputs from multiple networks are combined using some decision combination method to reach a final prediction. By using a real medical database, a set of experiments has been conducted to evaluate the performance of the MSC with different network configurations. The experimental results reveal the potential of the MCS as a useful decision support tool in the medical field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to provide information on lubricant contamination by biodiesel using vibration and neural network.Design/methodology/approach - The possible contamination of lubricants is verified by analyzing the vibration and neural network of a bench test under determinated conditions.Findings - Results have shown that classical signal analysis methods could not reveal any correlation between the signal and the presence of contamination, or contamination grade. on other hand, the use of probabilistic neural network (PNN) was very successful in the identification and classification of contamination and its grade.Research limitations/implications - This study was done for some specific kinds of biodiesel. Other types of biodiesel could be analyzed.Practical implications Contamination information is presented in the vibration signal, even if it is not evident by classical vibration analysis. In addition, the use of PNN gives a relatively simple and easy-to-use detection tool with good confidence. The training process is fast, and allows implementation of an adaptive training algorithm.Originality/value - This research could be extended to an internal combustion engine in order to verify a possible contamination by biodiesel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A test of the ability of a probabilistic neural network to classify deposits into types on the basis of deposit tonnage and average Cu, Mo, Ag, Au, Zn, and Pb grades is conducted. The purpose is to examine whether this type of system might serve as a basis for integrating geoscience information available in large mineral databases to classify sites by deposit type. Benefits of proper classification of many sites in large regions are relatively rapid identification of terranes permissive for deposit types and recognition of specific sites perhaps worthy of exploring further. Total tonnages and average grades of 1,137 well-explored deposits identified in published grade and tonnage models representing 13 deposit types were used to train and test the network. Tonnages were transformed by logarithms and grades by square roots to reduce effects of skewness. All values were scaled by subtracting the variable's mean and dividing by its standard deviation. Half of the deposits were selected randomly to be used in training the probabilistic neural network and the other half were used for independent testing. Tests were performed with a probabilistic neural network employing a Gaussian kernel and separate sigma weights for each class (type) and each variable (grade or tonnage). Deposit types were selected to challenge the neural network. For many types, tonnages or average grades are significantly different from other types, but individual deposits may plot in the grade and tonnage space of more than one type. Porphyry Cu, porphyry Cu-Au, and porphyry Cu-Mo types have similar tonnages and relatively small differences in grades. Redbed Cu deposits typically have tonnages that could be confused with porphyry Cu deposits, also contain Cu and, in some situations, Ag. Cyprus and kuroko massive sulfide types have about the same tonnages. Cu, Zn, Ag, and Au grades. Polymetallic vein, sedimentary exhalative Zn-Pb, and Zn-Pb skarn types contain many of the same metals. Sediment-hosted Au, Comstock Au-Ag, and low-sulfide Au-quartz vein types are principally Au deposits with differing amounts of Ag. Given the intent to test the neural network under the most difficult conditions, an overall 75% agreement between the experts and the neural network is considered excellent. Among the largestclassification errors are skarn Zn-Pb and Cyprus massive sulfide deposits classed by the neuralnetwork as kuroko massive sulfides—24 and 63% error respectively. Other large errors are the classification of 92% of porphyry Cu-Mo as porphyry Cu deposits. Most of the larger classification errors involve 25 or fewer training deposits, suggesting that some errors might be the result of small sample size. About 91% of the gold deposit types were classed properly and 98% of porphyry Cu deposits were classes as some type of porphyry Cu deposit. An experienced economic geologist would not make many of the classification errors that were made by the neural network because the geologic settings of deposits would be used to reduce errors. In a separate test, the probabilistic neural network correctly classed 93% of 336 deposits in eight deposit types when trained with presence or absence of 58 minerals and six generalized rock types. The overall success rate of the probabilistic neural network when trained on tonnage and average grades would probably be more than 90% with additional information on the presence of a few rock types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an effective decision making system for leak detection based on multiple generalized linear models and clustering techniques. The training data for the proposed decision system is obtained by setting up an experimental pipeline fully operational distribution system. The system is also equipped with data logging for three variables; namely, inlet pressure, outlet pressure, and outlet flow. The experimental setup is designed such that multi-operational conditions of the distribution system, including multi pressure and multi flow can be obtained. We then statistically tested and showed that pressure and flow variables can be used as signature of leak under the designed multi-operational conditions. It is then shown that the detection of leakages based on the training and testing of the proposed multi model decision system with pre data clustering, under multi operational conditions produces better recognition rates in comparison to the training based on the single model approach. This decision system is then equipped with the estimation of confidence limits and a method is proposed for using these confidence limits for obtaining more robust leakage recognition results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates neural network-based probabilistic decision support system to assess drivers' knowledge for the objective of developing a renewal policy of driving licences. The probabilistic model correlates drivers' demographic data to their results in a simulated written driving exam (SWDE). The probabilistic decision support system classifies drivers' into two groups of passing and failing a SWDE. Knowledge assessment of drivers within a probabilistic framework allows quantifying and incorporating uncertainty information into the decision-making system. The results obtained in a Jordanian case study indicate that the performance of the probabilistic decision support systems is more reliable than conventional deterministic decision support systems. Implications of the proposed probabilistic decision support systems on the renewing of the driving licences decision and the possibility of including extra assessment methods are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This important work describes recent theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Chapters survey research on pattern classification with binary-output networks, including a discussion of the relevance of the Vapnik Chervonenkis dimension, and of estimates of the dimension for several neural network models. In addition, Anthony and Bartlett develop a model of classification by real-output networks, and demonstrate the usefulness of classification with a "large margin." The authors explain the role of scale-sensitive versions of the Vapnik Chervonenkis dimension in large margin classification, and in real prediction. Key chapters also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient, constructive learning algorithms. The book is self-contained and accessible to researchers and graduate students in computer science, engineering, and mathematics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexity and level of uncertainty present in operation of power systems have significantly grown due to penetration of renewable resources. These complexities warrant the need for advanced methods for load forecasting and quantifying uncertainties associated with forecasts. The objective of this study is to develop a framework for probabilistic forecasting of electricity load demands. The proposed probabilistic framework allows the analyst to construct PIs (prediction intervals) for uncertainty quantification. A newly introduced method, called LUBE (lower upper bound estimation), is applied and extended to develop PIs using NN (neural network) models. The primary problem for construction of intervals is firstly formulated as a constrained single-objective problem. The sharpness of PIs is treated as the key objective and their calibration is considered as the constraint. PSO (particle swarm optimization) enhanced by the mutation operator is then used to optimally tune NN parameters subject to constraints set on the quality of PIs. Historical load datasets from Singapore, Ottawa (Canada) and Texas (USA) are used to examine performance of the proposed PSO-based LUBE method. According to obtained results, the proposed probabilistic forecasting method generates well-calibrated and informative PIs. Furthermore, comparative results demonstrate that the proposed PI construction method greatly outperforms three widely used benchmark methods. © 2014 Elsevier Ltd.