941 resultados para Pro-inflammatory process
Resumo:
Equine laminitis, a disease of the lamellar structure of the horse’s hoof, can be incited by numerous factors that include inflammatory and metabolic aetiologies. However, the role of inflammation in hyperinsulinaemic laminitis has not been adequately defined. Tolllike receptor (TLR) activation results in up-regulation of inflammatory pathways and the release of pro-inflammatory cytokines, including interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-�), and may be a pathogenic factor in laminitis. The aim of this study was to determine whether TLR4 expression and subsequent pro-inflammatory cytokine production is increased in lamellae and skeletal muscle during equine hyperinsulinaemia. Standardbred horses were treated with either a prolonged, euglycaemic hyperinsulinaemic clamp (p-EHC) or a prolonged, glucose infusion (p-GI), which induced marked and moderate hyperinsulinaemia, respectively. Age-matched control horses were treated simultaneously with a balanced electrolyte solution. Treated horses developed clinical (p-EHC) or subclinical (p-GI) laminitis, whereas controls did not. Skeletal muscle and lamellar protein extracts were analysed by Western blotting for TLR4, IL-6, TNF-� and suppressor of cytokine signalling 3 (SOCS3) expression. Lamellar protein expression of TLR4 and TNF-�, but not IL-6, was increased by the p-EHC, compared to control horses. A significant positive correlation was found between lamellar TLR4 and SOCS3. Skeletal muscle protein expression of TLR4 signalling parameters did not differ between control and p-EHC-treated horses. Similarly, the p-GI did not result in up-regulation of lamellar protein expression of any parameter. The results suggest that insulin-sensitive tissues may not accurately reflect lamellar pathology during hyperinsulinaemia. While TLR4 is present in the lamellae, its activation appears unlikely to contribute significantly to the developmental pathogenesis of hyperinsulinaemic laminitis. However, inflammation may have a role to play in the later stages (e.g., repair or remodelling) of the disease.
Resumo:
Perfusion experiments on an isolated, canine lateral saphenous vein segment preparation have shown that noradrenaline causes potent, flow dependent effects, at a threshold concentration comparable to that of plasma noradrenaline, when it stimulates the segment by diffusion from its microcirculation (vasa vasorum). The effects caused are opposite to those neuronal noradrenaline causes in vivo and that, in the light of the principle that all information is transmitted in patterns that need contrast to be detected – star patterns need darkness, sound patterns, quietness – has generated the hypothesis that plasma noradrenaline provides the obligatory contrast tissues need to detect and respond to the regulatory information encrypted in the diffusion pattern of neuronal noradrenaline. Based on the implications of that hypothesis, the controlled variable of the peripheral noradrenergic system is believed to be the maintenance of a set point balance between the contrasting effects of plasma and neuronal noradrenaline on a tissue. The hypothalamic sympathetic centres are believed to monitor that balance through the level of afferent sympathetic traffic they receive from a tissue and to correct any deviation it detects in the balance by adjusting the level of efferent sympathetic input it projects to the tissue. The failure of the centres to maintain the correct balance, for reasons intrinsic or extrinsic to themselves, is believed to be responsible for degenerative and genetic disorders. When the failure causes the balance to be polarised in favour of the effect of plasma noradrenaline that is believed to cause inflammatory diseases like dilator cardiac failure, renal hypertension, varicose veins and aneurysms; when it causes it to be polarised in favour of the effect of neuronal noradrenaline that is believed to cause genetic diseases like hypertrophic cardiopathy, pulmonary hypertension and stenoses and when, in pregnancy, a factor causes the polarity to favour plasma noradrenaline in all the maternal tissues except the uterus and conceptus, where it favours neuronal noradrenaline, that is believed to cause preeclampsia.
Resumo:
L’inflammation: Une réponse adaptative du système immunitaire face à une insulte est aujourd’hui reconnue comme une composante essentielle à presque toutes les maladies infectieuses ou autres stimuli néfastes, tels les dommages tissulaires incluant l’infarctus du myocarde et l’insuffisance cardiaque. Dans le contexte des maladies cardiovasculaires, l’inflammation se caractérise principalement par une activation à long terme du système immunitaire, menant à une faible, mais chronique sécrétion de peptides modulateurs, appelés cytokines pro-inflammatoires. En effet, la littérature a montré à plusieurs reprises que les patients souffrant d’arythmies et de défaillance cardiaque présentent des taux élevés de cytokines pro-inflammatoires tels le facteur de nécrose tissulaire alpha (TNFα), l’interleukine 1β (IL-1β) et l’interleukine 6. De plus, ces patients souffrent souvent d’une baisse de la capacité contractile du myocarde. Le but de notre étude était donc de déterminer si un lien de cause à effet existe entre ces phénomènes et plus spécifiquement si le TNFα, l’IL-1β et l’IL-6 peuvent affecter les propriétés électriques et contractiles du cœur en modulant le courant Ca2+ de type L (ICaL) un courant ionique qui joue un rôle primordial au niveau de la phase plateau du potentiel d’action ainsi qu’au niveau du couplage excitation-contraction. Les possibles méchansimes par lesquels ces cytokines exercent leurs effets seront aussi explorés. Pour ce faire, des cardiomyocytes ventriculaires de souris nouveau-nées ont été mis en culture et traités 24 heures avec des concentrations pathophysiologiques (30 pg/mL) de TNFα, IL-1β ou IL-6. Des enregistrements de ICaL réalisés par la technique du patch-clamp en configuration cellule entière ont été obtenus par la suite et les résultats montrent que le TNFα n’affecte pas ICaL, même à des concentrations plus élevées (1 ng/mL). En revanche, l’IL-1β réduisait de près de 40% la densité d’ICaL. Afin d’examiner si le TNFα et l’IL-1β pouvaient avoir un effet synergique, les cardiomyocytes ont été traité avec un combinaison des deux cytokines. Toutefois aucun effet synergique sur ICaL n’a été constaté. En outre, l’IL-6 réduisait ICaL significativement, cependant la réduction de 20% était moindre que celle induite par IL-1β. Afin d’élucider les mécanismes sous-jacents à la réduction de ICaL après un traitement avec IL-1β, l’expression d’ARNm de CaV1.2, sous-unité α codante pour ICaL, a été mesurée par qPCR et les résultats obtenus montrent aucun changement du niveau d’expression. Plusieurs études ont montré que l’inflammation et le stress oxydatif vont de pair. En effet, l’imagerie confocale nous a permis de constater une augmentation accrue du stress oxydatif induit par IL-1β et malgré un traitement aux antioxydants, la diminution de ICaL n’a pas été prévenue. Cette étude montre qu’IL-1β et IL-6 réduisent ICaL de façon importante et ce indépendamment d’une régulation transcriptionelle ou du stress oxydatif. De nouvelles données préliminaires suggèrent que ICaL serait réduit suite à l’activation des protéines kinase C mais des études additionelles seront nécessaires afin d’étudier cette avenue. Nos résultats pourraient contribuer à expliquer les troubles du rythme et de contractilité observés chez les patients souffrant de défaillance cardiaque.
Resumo:
Leukotrienes are classic inflammatory response mediators considered chemotactic agents and microbicidal activity regulators in cells of the innate immune system, playing a protective role against different infectious agents. In this study, we investigated the involvement of leukotrienes in the course of murine paracoccidioidomycosis based on the following immunologic parameters: cell influx, mieloperoxydase activity, NO production, cytokine production, and fungal recovery in lungs of mice selected according to the intensity of their low (AIRmin) and high (AIRmax) acute inflammatory response. Infection by P. brasiliensis induced considerable production of IL-6, IL-10, IFN-gamma and TNF-alpha cytokines, and led to cell recruitment, as well as NO production in lungs at different study periods. In animals treated with MK886, a leukotriene biosynthesis inhibitor, IFN-gamma, IL-6 and TNF-alpha production was lower, while neutrophil influx and NO production decreased. These results may explain the higher fungal load in lungs of animals in which leukotriene synthesis was inhibited, suggesting that leukotrienes have a possible protective role in experimental paracoccidioidomycosis. AIRmax animals had lower fungal load in comparison with AIRmin ones, which can be related to the AIR phenotype regarding neutrophil migration, besides lower production of NO and pro-inflammatory cytokines. Thus, mice presenting AIRmax background are more resistant to infection by P. brasiliensis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of viable splenic lymphoid cells and their constituents (filtrate) on carrageenan-induced acute pleurisy was investigated in rats. Suspensions of lymphoid cells administered intravenously to recipients just prior to initiation of pleurisy enhance both the volume of exudate and cell accumulation in the pleural cavity 3 h after the irritation. Similar results were observed when filtrate of disrupted lymphoid cells was injected either 30 or 5 min before the carrageenan, but not when administered 30 min afterwards. Suspensions of bone marrow cells, on the contrary, were ineffective in producing an enhancement of the parameters studied. When administered into the pleural cavity together with carrageenan, the lymphoid cell filtrate augmented the inflammatory response to the irritant. Nevertheless, it was ineffective, per se, to elicit any local change. It is suggested that lymphoid cells may play a pro-inflammatory role in the initiation of the process by enhancing both the fluid and the cellular components of inflammation.
Resumo:
Accumulating evidence demonstrates that chronic inflammation plays an important role in heart hypertrophy and cardiac diseases. However, the fine-tuning of cellular and molecular mechanisms that connect inflammatory process and cardiac diseases is still under investigation. Many reports have demonstrated that the overexpression of the cyclooxygenase-2 (COX-2), a key enzyme in the conversion of arachidonic acid to prostaglandins and other prostanoids, is correlated with inflammatory processes. Increased level of prostaglandin E2 was also found in animal model of left ventricle of hypertrophy. Based on previous observations that demonstrated a regulatory loop between COX-2 and the RNA-binding protein CUGBP2, we studied cellular and molecular mechanisms of a pro-inflammatory stimulus in a cardiac cell to verify if the above two molecules could be correlated with the inflammatory process in the heart. A cellular model of investigation was established and H9c2 was used.We also demonstrated a regulatory connection between COX-2 and CUGBP2 in the cardiac cells. Based on a set of different assays including gene silencing and fluorescence microscopy, we describe a novel function for the RNA-binding protein CUGBP2 in controlling the pro-inflammatory stimulus: subcellular trafficking of messenger molecules to specific cytoplasmic stress granules to maintain homeostasis. © 2013 International Federation for Cell Biology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND CONTEXT In canine intervertebral disc (IVD) disease, a useful animal model, only little is known about the inflammatory response in the epidural space. PURPOSE To determine messenger RNA (mRNA) expressions of selected cytokines, chemokines, and matrix metalloproteinases (MMPs) qualitatively and semiquantitatively over the course of the disease and to correlate results to neurologic status and outcome. STUDY DESIGN/SETTING Prospective study using extruded IVD material of dogs with thoracolumbar IVD extrusion. PATIENT SAMPLE Seventy affected and 13 control (24 samples) dogs. OUTCOME MEASURES Duration of neurologic signs, pretreatment, neurologic grade, severity of pain, and outcome were recorded. After diagnostic imaging, decompressive surgery was performed. METHODS Messenger RNA expressions of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF), interferon (IFN)γ, MMP-2, MMP-9, chemokine ligand (CCL)2, CCL3, and three housekeeping genes was determined in the collected epidural material by Panomics 2.0 QuantiGene Plex technology. Relative mRNA expression and fold changes were calculated. Relative mRNA expression was correlated statistically to clinical parameters. RESULTS Fold changes of TNF, IL-1β, IL-2, IL-4, IL-6, IL-10, IFNγ, and CCL3 were clearly downregulated in all stages of the disease. MMP-9 was downregulated in the acute stage and upregulated in the subacute and chronic phase. Interleukin-8 was upregulated in acute cases. MMP-2 showed mild and CCL2 strong upregulation over the whole course of the disease. In dogs with severe pain, CCL3 and IFNγ were significantly higher compared with dogs without pain (p=.017/.020). Dogs pretreated with nonsteroidal anti-inflammatory drugs revealed significantly lower mRNA expression of IL-8 (p=.017). CONCLUSIONS The high CCL2 levels and upregulated MMPs combined with downregulated T-cell cytokines and suppressed pro-inflammatory genes in extruded canine disc material indicate that the epidural reaction is dominated by infiltrating monocytes differentiating into macrophages with tissue remodeling functions. These results will help to understand the pathogenic processes representing the basis for novel therapeutic approaches. The canine IVD disease model will be rewarding in this process.
Resumo:
The role of inflammatory response after spinal cord injury remains unclear. This thesis was a step forward in studying how promoting the inflammation, by delivery pro-inflammatory growth factors, affects the outcomes of spinal cord injury. A significant functional improvement was observed after treatment and these results suggest an interesting avenue for future clinical treatments and may provide a platform to improve the efficacy of other treatments.
Resumo:
Immunoglobulin G (IgG) is central in mediating host defense due to its ability to target and eliminate invading pathogens. The fragment antigen binding (Fab) regions are responsible for antigen recognition; however the effector responses are encoded on the Fc region of IgG. IgG Fc displays considerable glycan heterogeneity, accounting for its complex effector functions of inflammation, modulation and immune suppression. Intravenous immunoglobulin G (IVIG) is pooled serum IgG from multiple donors and is used to treat individuals with autoimmune and inflammatory disorders such as rheumatoid arthritis and Kawasaki’s disease, respectively. It contains all the subtypes of IgG (IgG1-4) and over 120 glycovariants due to variation of an Asparagine 297-linked glycan on the Fc. The species identified as the activating component of IVIG is sialylated IgG Fc. Comparisons of wild type Fc and sialylated Fc X-ray crystal structures suggests that sialylation causes an increase in conformational flexibility, which may be important for its anti-inflammatory properties.
Although glycan modifications can promote the anti-inflammatory properties of the Fc, there are amino acid substitutions that cause Fcs to initiate an enhanced immune response. Mutations in the Fc can cause up to a 100-fold increase in binding affinity to activating Fc gamma receptors located on immune cells, and have been shown to enhance antibody dependent cell-mediated cytotoxicity. This is important in developing therapeutic antibodies against cancer and infectious diseases. Structural studies of mutant Fcs in complex with activating receptors gave insight into new protein-protein interactions that lead to an enhanced binding affinity.
Together these studies show how dynamic and diverse the Fc region is and how both protein and carbohydrate modifications can alter structure, leading to IgG Fc’s switch from a pro-inflammatory to an anti-inflammatory protein.