983 resultados para Printed electronics
Resumo:
Dissertação para obtenção do Grau de Doutor em Química
Resumo:
In this work, cellulose-based electro and ionic conductive composites were developed for application in cellulose based printed electronics. Electroconductive inks were successfully formulated for screen-printing using carbon fibers (CFs) and multi-walled carbon nanotubes (MWCNTs) as conductive functional material and cellulose derivatives working as binder. The formulated inks were used to fabricate conductive flexible and disposable electrodes on paper-based substrates. Interesting results were obtained after 10 printing passes and drying at RT of the ink with 10 % wt. of pristine CFs and 3% wt. of carboxymethyl cellulose (CMC), exhibiting a resistivity of 1.03 Ωcm and a resolution of 400 μm. Also, a resistivity of 0.57 Ωcm was obtained for only one printing pass using an ink based on 0.5 % wt. MWCNTs and 3 % wt. CMC. It was also demonstrated that ionic conductive cellulose matrix hydrogel can be used in electrolyte-gated transistors (EGTs). The electrolytes revealed a double layer capacitance of 12.10 μFcm-2 and ionic conductivity of 3.56x10-7 Scm-1. EGTs with a planar configuration, using sputtered GIZO as semiconducting layer, reached an ON/OFF ratio of 3.47x105, a VON of 0.2 V and a charge carrier mobility of 2.32 cm2V-1s-1.
Resumo:
In the early nineties, Mark Weiser wrote a series of seminal papers that introduced the concept of Ubiquitous Computing. According to Weiser, computers require too much attention from the user, drawing his focus from the tasks at hand. Instead of being the centre of attention, computers should be so natural that they would vanish into the human environment. Computers become not only truly pervasive but also effectively invisible and unobtrusive to the user. This requires not only for smaller, cheaper and low power consumption computers, but also for equally convenient display solutions that can be harmoniously integrated into our surroundings. With the advent of Printed Electronics, new ways to link the physical and the digital worlds became available. By combining common printing techniques such as inkjet printing with electro-optical functional inks, it is starting to be possible not only to mass-produce extremely thin, flexible and cost effective electronic circuits but also to introduce electronic functionalities into products where it was previously unavailable. Indeed, Printed Electronics is enabling the creation of novel sensing and display elements for interactive devices, free of form factor. At the same time, the rise in the availability and affordability of digital fabrication technologies, namely of 3D printers, to the average consumer is fostering a new industrial (digital) revolution and the democratisation of innovation. Nowadays, end-users are already able to custom design and manufacture on demand their own physical products, according to their own needs. In the future, they will be able to fabricate interactive digital devices with user-specific form and functionality from the comfort of their homes. This thesis explores how task-specific, low computation, interactive devices capable of presenting dynamic visual information can be created using Printed Electronics technologies, whilst following an approach based on the ideals behind Personal Fabrication. Focus is given on the use of printed electrochromic displays as a medium for delivering dynamic digital information. According to the architecture of the displays, several approaches are highlighted and categorised. Furthermore, a pictorial computation model based on extended cellular automata principles is used to programme dynamic simulation models into matrix-based electrochromic displays. Envisaged applications include the modelling of physical, chemical, biological, and environmental phenomena.
Resumo:
En els últims anys printed electronics està aixecant un gran interès entre la indústria electrònica. Aquest tipus de procés consisteix en imprimir circuits amb tècniques d'impressió convencionals utilitzant tintes conductores, resistives, dielèctriques o semiconductores sobre substrats flexibles de baix cost com paper o plàstic. Fer servir aquestes tècniques s'espera que suposi una reducció dels costos de producció degut a que és un procés totalment additiu el que fa que sigui més senzill i es redueixi la quantitat de material emprat. El disseny de dispositius bàsics com resistències, condensadors i bobines per posteriorment veure la relació entre simulacions i valors obtinguts ha ocupat la primera part del projecte. La segona s’ha centrat en fer prototips d’antenes per a RFID (Radio Frequency IDentification) amb la tecnologia que es disposa a CEPHIS (Centre de Prototips i Solucions Hardwre-Software). Tot això ha servit per caracteritzar la tecnologia de la que es disposa i saber en quins apartats s’ha de seguir treballant per aconseguir millors prestacions.
Resumo:
The Roll-to-Roll process makes it possible to print electronic products continuously onto a uniform substrate. Printing components on flexible surfaces can bring down the costs of simple electronic devices such as RFID tags, antennas and transistors. The possibility of quickly printing flexible electronic components opens up a wide array of novel products previously too expensive to produce on a large scale. Several different printing methods can be used in Roll-to-Roll printing, such as gravure, spray, offset, flexographic and others. Most of the methods can also be mixed in one production line. Most of them still require years of research to reach a significant commercial level. The research for this thesis was carried out at the Konkuk University Flexible Display Research Center (KU-FDRC) in Seoul, Korea. A system using Roll-to-Roll printing requires that the motion of the web can be controlled in every direction in order to align different layers of ink properly. Between printers the ink is dried with hot air. The effects of thermal expansion on the tension of the web are studied in this work, and a mathematical model was constructed on Matlab and Simulink. Simulations and experiments lead to the conclusion that the thermal expansion of the web has a great influence on the tension of the web. Also, experimental evidence was gained that the particular printing machine used for these experiments at KU-FDRC may have a problem in controlling the speeds of the cylinders which pull the web.
Resumo:
Mass-produced paper electronics (large area organic printed electronics on paper-based substrates, “throw-away electronics”) has the potential to introduce the use of flexible electronic applications in everyday life. While paper manufacturing and printing have a long history, they were not developed with electronic applications in mind. Modifications to paper substrates and printing processes are required in order to obtain working electronic devices. This should be done while maintaining the high throughput of conventional printing techniques and the low cost and recyclability of paper. An understanding of the interactions between the functional materials, the printing process and the substrate are required for successful manufacturing of advanced devices on paper. Based on the understanding, a recyclable, multilayer-coated paper-based substrate that combines adequate barrier and printability properties for printed electronics and sensor applications was developed in this work. In this multilayer structure, a thin top-coating consisting of mineral pigments is coated on top of a dispersion-coated barrier layer. The top-coating provides well-controlled sorption properties through controlled thickness and porosity, thus enabling optimizing the printability of functional materials. The penetration of ink solvents and functional materials stops at the barrier layer, which not only improves the performance of the functional material but also eliminates potential fiber swelling and de-bonding that can occur when the solvents are allowed to penetrate into the base paper. The multi-layer coated paper under consideration in the current work consists of a pre-coating and a smoothing layer on which the barrier layer is deposited. Coated fine paper may also be used directly as basepaper, ensuring a smooth base for the barrier layer. The top layer is thin and smooth consisting of mineral pigments such as kaolin, precipitated calcium carbonate, silica or blends of these. All the materials in the coating structure have been chosen in order to maintain the recyclability and sustainability of the substrate. The substrate can be coated in steps, sequentially layer by layer, which requires detailed understanding and tuning of the wetting properties and topography of the barrier layer versus the surface tension of the top-coating. A cost competitive method for industrial scale production is the curtain coating technique allowing extremely thin top-coatings to be applied simultaneously with a closed and sealed barrier layer. The understanding of the interactions between functional materials formulated and applied on paper as inks, makes it possible to create a paper-based substrate that can be used to manufacture printed electronics-based devices and sensors on paper. The multitude of functional materials and their complex interactions make it challenging to draw general conclusions in this topic area. Inevitably, the results become partially specific to the device chosen and the materials needed in its manufacturing. Based on the results, it is clear that for inks based on dissolved or small size functional materials, a barrier layer is beneficial and ensures the functionality of the printed material in a device. The required active barrier life time depends on the solvents or analytes used and their volatility. High aspect ratio mineral pigments, which create tortuous pathways and physical barriers within the barrier layer limit the penetration of solvents used in functional inks. The surface pore volume and pore size can be optimized for a given printing process and ink through a choice of pigment type and coating layer thickness. However, when manufacturing multilayer functional devices, such as transistors, which consist of several printed layers, compromises have to be made. E.g., while a thick and porous top-coating is preferable for printing of source and drain electrodes with a silver particle ink, a thinner and less absorbing surface is required to form a functional semiconducting layer. With the multilayer coating structure concept developed in this work, it was possible to make the paper substrate suitable for printed functionality. The possibility of printing functional devices, such as transistors, sensors and pixels in a roll-to-roll process on paper is demonstrated which may enable introducing paper for use in disposable “onetime use” or “throwaway” electronics and sensors, such as lab-on-strip devices for various analyses, consumer packages equipped with product quality sensors or remote tracking devices.
Resumo:
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Portuguese Science Foundation - project Electra PTDC/CTM/099124/2008 and the PhD grant SFRH/BD/45224. financial support: Professor E. Fortunato’s ERC 2008 Advanced Grant (INVISIBLE contract number 228144), “APPLE” FP7-NMP-2010-SME/262782-2 and “SMARTEC” FP7-ICT-2009.3.9/258203
Resumo:
This work reports the development of field-effect transistors (FETs), whose channel is based on zinc oxide (ZnO) nanoparticles (NPs). Using screen-printing as the primary deposition technique, different inks were developed, where the semiconducting ink is based on a ZnO NPs dispersion in ethyl cellulose (EC). These inks were used to print electrolyte-gated transistors (EGTs) in a staggered-top gate structure on glass substrates, using a lithium-based polymeric electrolyte. In another approach, FETs with a staggered-bottom gate structure on paper were developed using a sol-gel method to functionalize the paper’s surface with ZnO NPs, using zinc acetate dihydrate (ZnC4H6O4·2H2O) and sodium hydroxide (NaOH) as precursors. In this case, the paper itself was used as dielectric. The various layers of the two devices were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric and differential scanning calorimetric analyses (TG-DSC). Electrochemical impedance spectroscopy (EIS) was used in order to evaluate the electric double-layer (EDL) formation, in the case of the EGTs. The ZnO NPs EGTs present electrical modulation for annealing temperatures equal or superior to 300 ºC and in terms of electrical properties they showed On/Off ratios in the order of 103, saturation mobilities (μSat) of 1.49x10-1 cm2(Vs)-1 and transconductance (gm) of 10-5 S. On the other hand, the ZnO NPs FETs on paper exhibited On/Off ratios in the order of 102, μSat of 4.83x10- 3 cm2(Vs)-1and gm around 10-8 S.
Resumo:
Tese de Doutoramento Ciência e Engenharia de Polímeros e Compósitos.
Resumo:
Printed electronics is an emerging concept in electronics manufacturing and it is in very early development stage. The technology is not stable, design kits are not developed, and flows and Computer Aided Design (CAD) tools are not fixed yet. The European project TDK4PE addresses all this issues and this PFC has been realized on this context. The goal is to develop an XML-based information system for the collection and management of information from the technology and cell libraries developed in TDK4PE. This system will ease the treatment of that information for a later generation of specific Design Kits (DK) and the corresponding documentation. This work proposes a web application to generate technology files and design kits in a formatted way; it also proposes a structure for them and a database implementation for storing the needed information. The application will allow its users to redefine the structure of those files, as well as export and import XML files, between other formats.
Resumo:
L’objectiu d’aquest treball és el disseny i la implementació d’un conjunt de cel·les definides de forma paramètrica, i orientades a l’àmbit tecnològic emergent de l’electrònica impresa. L’ús de cel·les paramètriques en aquest entorn tecnològic poc madur, ha de permetre que els dissenys s’adaptin als canvis de regles de disseny de les tecnologies en aquest cas per estils de disseny PMOS.
Resumo:
En aquest projecte s’han dissenyat i simulat diferents models de tags RFID per a la banda UHF sobre diferents classes de substrats i tintes conductores amb l’objectiu d’estudiar la viabilitat de la tecnologia de Printed Electronics per a la seva d’implementació física. A partir de dues configuracions ja existents a la literatura, aquestes etiquetes RFID s’han modelat electromagnèticament mitjançant el software ADS i s’ha simulat la seva resposta freqüencial. En segon terme, a fi d’avaluar el seu rendiment, també s’ha representat el read range d’aquests tags RFID en funció d’aquestes tintes conductores i substrats. Posteriorment, s’han realitzat diferents proves de fabricació mitjançant un mètode basat en la serigrafia, així com d’obtenció experimental de la seva distància de lectura. Finalment, en base als resultats obtinguts s’ha pogut concloure que és viable realitzar tags RFID segons aquesta tècnica d’impressió, però a falta d’una verificació experimental únicament a nivell de simulació.
Resumo:
Organic printed electronics is attracting an ever-growing interest in the last decades because of its impressive breakthroughs concerning the chemical design of π-conjugated materials and their processing. This has an impact on novel applications, such as flexible-large-area displays, low- cost printable circuits, plastic solar cells and lab-on-a-chip devices. The organic field-effect transistor (OFET) relies on a thin film of organic semiconductor that bridges source and drain electrodes. Since its first discovery in the 80s, intensive research activities were deployed in order to control the chemico-physical properties of these electronic devices and consequently their charge. Self-assembled monolayers (SAMs) are a versatile tool for tuning the properties of metallic, semi-conducting, and insulating surfaces. Within this context, OFETs represent reliable instruments for measuring the electrical properties of the SAMs in a Metal/SAM/OS junction. Our experimental approach, named Charge Injection Organic-Gauge (CIOG), uses OTFT in a charge-injection controlled regime. The CIOG sensitivity has been extensively demonstrated on different homologous self-assembling molecules that differ in either chain length or in anchor/terminal group. One of the latest applications of organic electronics is the so-called “bio-electronics” that makes use of electronic devices to encompass interests of the medical science, such as biosensors, biotransducers etc… As a result, thee second part of this thesis deals with the realization of an electronic transducer based on an Organic Field-Effect Transistor operating in aqueous media. Here, the conventional bottom gate/bottom contact configuration is replaced by top gate architecture with the electrolyte that ensures electrical contact between the top gold electrode and the semiconductor layer. This configuration is named Electrolyte-Gated Field-Effect Transistor (EGOFET). The functionalization of the top electrode is the sensing core of the device allowing the detection of dopamine as well as of protein biomarkers with ultra-low sensitivity.