893 resultados para Print on demand
Resumo:
The study addressed a phenomenon that has become common marketing practice, customer loyalty programs. Although a common type of consumer relationship, there is limited knowledge of its nature. The purpose of the study was to create structured understanding of the nature of customer relationships from both the provider’s and the consumer’s viewpoints by studying relationship drivers and proposing the concept of relational motivation as a provider of a common framework for the analysis of these views. The theoretical exploration focused on reasons for engaging in customer relationships for both the consumer and the provider. The themes of buying behaviour, industrial and network marketing and relationship marketing, as well as the concepts of a customer relationship, customer loyalty, relationship conditions, relational benefits, bonds and commitment were explored and combined in a new way. Concepts from the study of business-to-business relationships were brought over and their power in explaining the nature of consumer relationships examined. The study provided a comprehensive picture of loyalty programs, which is an important contribution to the academic as well as the managerial discussions. The consumer study provided deep insights into the nature of customer relationships. The study provides a new frame of reference to support the existing concepts of loyalty and commitment with the introduction of the relationship driver and relational motivation concepts. The result is a novel view of the nature of customer relationships that creates new understanding of the forces leading to loyal behaviour and commitment. The study concludes with managerial implications.
Resumo:
Customer loyalty has been a central topic of both marketing theory and practice for several decades. Customer disloyalty, or relationship ending, has received much less attention. Despite the close relation between customer loyalty and disloyalty, they have rarely been addressed in the same study. The thesis bridges this gap by focusing on both loyal and disloyal customers and the factors characterising them. Based on a qualitative study of loyal and disloyal bank customers in the Finnish retail banking market, both factors that are common to the groups and factors that differentiate between them are identified. A conceptual framework of factors that affect customer loyalty or disloyalty is developed and used to analyse the empirical data. According to the framework, customers’ loyalty status (behavioural and attitudinal loyalty) is influenced by positive, loyalty-supporting, and negative, loyalty-repressing factors. Loyalty-supporting factors either promote customer dedication, making the customer want to remain loyal, or act as constraints, hindering the customer from switching. Among the loyalty-repressing factors it is especially important to identify those that act as triggers of disloyal behaviour, making customers switch service providers. The framework further suggests that by identifying the sources of loyalty-supporting and -repressing factors (the environment, the provider, the customer, the provider-customer interaction, or the core service) one can determine which factors are within the control of the service provider. Attitudinal loyalty is approached through a customer’s “feeling of loyalty”, as described by customers both orally and graphically. By combining the graphs with behavioural loyalty, seven customer groups are identified: Stable Loyals, Rescued Loyals, Loyals at Risk, Positive Disloyals, Healing Disloyals, Fading Disloyals, and Abrupt Disloyals. The framework and models of the thesis can be used to analyse factors that affect customer loyalty and disloyalty in different service contexts. Since the empirical study was carried out in a retail bank setting, the thesis has managerial relevance especially for banks. Christina Nordman is associated with CERS, Center for Relationship Marketing and Service Management at the Swedish School of Economics and Business Administration. The doctoral thesis is part of the Göran Collert Research Project in Customer Relationships and Retail Banking and has been funded by The Göran Collert Foundation.
Resumo:
Measured drop speeds from a range of industrial drop-on-demand (DoD) ink-jet print head designs scale with the predictions of very simple physical models and results of numerical simulations. The main drop/jet speeds at a specified stand-off depend on fluid properties, nozzle exit diameter, and print head drive amplitude for fixed waveform timescales. Drop speeds from the Xaar, Spectra Dimatix, and MicroFab DoD print heads tested with (i) Newtonian, (ii) weakly elastic, and (iii) highly shear-thinning fluids all show a characteristic linear rise with drive voltage (setting) above an apparent threshold drive voltage. Jetting, simple modeling approaches, and numerical simulations of Newtonian fluids over the typical DoD printing range of surface tensions and viscosities were studied to determine how this threshold drive value and the slope of the characteristic linear rise depend on these fluid properties and nozzle exit area. The final speed is inversely proportional to the nozzle exit area, as expected from volume conservation. These results should assist specialist users in the development and optimization of DoD applications and print head design. For a given density, the drive threshold is determined primarily by viscosity, and the constant of proportionality k linking speed with drive above a drive threshold becomes independent of viscosity and surface tension for more viscous DoD fluid jetting. © 2013 Society for Imaging Science and Technology.
Resumo:
Three regimes of fast DoD jetting behaviour for solutions of mono-disperse linear polymers have been linked to the underlying polymer molecular chains and their fully extended length L in good solvents. This allows scaling laws in molecular weight to be predicted and applied to experimental jetting results from different DoD print heads. The higher extensional flows encountered in high speed jetting in viscous solvents can fully stretch linear molecules outside the nozzle, permitting jetting of higher polymer content than for purely elastic behaviour. These results are significant for DoD printing at raised jet speeds and will apply to any DoD print head jetting linear polymer solutions.
Resumo:
Jets from drop-on-demand inkjet print-heads consist of a main drop with a trailing filament, which either condenses into the main drop, or breaks up into satellite drops. Filament behaviour is quantitatively similar to that of larger, free symmetrical filamentscan be predicted from the aspect ratio and Ohnesorge number. Symmetrical filaments generated from inkjet print-heads show the same behaviour. A simple model, based on competition between the processes of axial shortening and radial necking, predicts the critical aspect ratio below which the jet condenses into a single drop. The success of this simple criterion supports the underlying physical model. © 2013 American Institute of Physics.
Resumo:
Time-resolved particle image velocimetry (PIV) has been performed inside the nozzle of a commercially available inkjet print-head to obtain the time-dependent velocity waveform. A printhead with a single transparent nozzle 80 μm in orifice diameter was used to eject single droplets at a speed of 5 m/s. An optical microscope was used with an ultra-high-speed camera to capture the motion of particles suspended in a transparent liquid at the center of the nozzle and above the fluid meniscus at a rate of half a million frames per second. Time-resolved velocity fields were obtained from a fluid layer approximately 200 μm thick within the nozzle for a complete jetting cycle. A Lagrangian finite-element numerical model with experimental measurements as inputs was used to predict the meniscus movement. The model predictions showed good agreement with the experimental results. This work provides the first experimental verification of physical models and numerical simulations of flows within a drop-on-demand nozzle. © 2012 Society for Imaging Science and Technology.
Resumo:
With the advent of Internet, video over IP is gaining popularity. In such an environment, scalability and fault tolerance will be the key issues. Existing video on demand (VoD) service systems are usually neither scalable nor tolerant to server faults and hence fail to comply to multi-user, failure-prone networks such as the Internet. Current research areas concerning VoD often focus on increasing the throughput and reliability of single server, but rarely addresses the smooth provision of service during server as well as network failures. Reliable Server Pooling (RSerPool), being capable of providing high availability by using multiple redundant servers as single source point, can be a solution to overcome the above failures. During a possible server failure, the continuity of service is retained by another server. In order to achieve transparent failover, efficient state sharing is an important requirement. In this paper, we present an elegant, simple, efficient and scalable approach which has been developed to facilitate the transfer of state by the client itself, using extended cookie mechanism, which ensures that there is no noticeable change in disruption or the video quality.
Resumo:
In this paper, we have proposed a novel certificate-less on-demand public key management (CLPKM) protocol for self-organized MANETs. The protocol works on flat network architecture, and distinguishes between authentication layer and routing layer of the network. We put an upper limit on the length of verification route and use the end-to-end trust value of a route to evaluate its strength. The end-to-end trust value is used by the protocol to select the most trusted verification route for accomplishing public key verification. Also, the protocol uses MAC function instead of RSA certificates to perform public key verification. By doing this, the protocol saves considerable computation power, bandwidth and storage space. The saved storage space is utilized by the protocol to keep a number of pre-established routes in the network nodes, which helps in reducing the average verification delay of the protocol. Analysis and simulation results confirm the effectiveness of the proposed protocol.
Resumo:
In this paper we present a combination of technologies to provide an Energy-on-Demand (EoD) service to enable low cost innovation suitable for microgrid networks. The system is designed around the low cost and simple Rural Energy Device (RED) Box which in combination with Short Message Service (SMS) communication methodology serves as an elementary proxy for Smart meters which are typically used in urban settings. Further, customer behavior and familiarity in using such devices based on mobile experience has been incorporated into the design philosophy. Customers are incentivized to interact with the system thus providing valuable behavioral and usage data to the Utility Service Provider (USP). Data that is collected over time can be used by the USP for analytics envisioned by using remote computing services known as cloud computing service. Cloud computing allows for a sharing of computational resources at the virtual level across several networks. The customer-system interaction is facilitated by a third party Telecom Service provider (TSP). The approximate cost of the RED Box is envisaged to be under USD 10 on production scale.
Resumo:
The creation and evolution of millimeter-sized droplets of a Newtonian liquid generated on demand by the action of pressure pulses were studied experimentally and simulated numerically. The velocity response within a model, large-scale printhead was recorded by laser Doppler anemometry, and the waveform was used in Lagrangian finite-element simulations as an input. Droplet shapes and positions were observed by shadowgraphy and compared with their numerically obtained analogues. © 2011 American Physical Society.