990 resultados para Princeton Ocean Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulence characteristics in the Indonesian seas on the horizontal scale of order of 100 km were calculated with a regional model of the Indonesian seas circulation in the area based on the Princeton Ocean Model (POM). As is well known, the POM incorporates the Mellor–Yamada turbulence closure scheme. The calculated characteristics are: twice the turbulence kinetic energy per unit mass, <i>q</i><sup>2</sup>; the turbulence master scale, &ell;; mixing coefficients of momentum, <i>K</i><sub>M</sub>; and temperature and salinity, <i>K</i><sub>H</sub>; etc. The analyzed turbulence has been generated essentially by the shear of large-scale ocean currents and by the large-scale wind turbulence. We focused on the analysis of turbulence around important topographic features, such as the Lifamatola Sill, the North Sangihe Ridge, the Dewakang Sill, and the North and South Halmahera Sea Sills. In general, the structure of turbulence characteristics in these regions turned out to be similar. For this reason, we have carried out a detailed analysis of the Lifamatola Sill region because dynamically this region is very important and some estimates of mixing coefficients in this area are available. <br><br> Briefly, the main results are as follows. The distribution of <i>q</i><sup>2</sup> is quite adequately reproduced by the model. To the north of the Lifamatola Sill (in the Maluku Sea) and to the south of the Sill (in the Seram Sea), large values of <i>q</i><sup>2</sup> occur in the deep layer extending several hundred meters above the bottom. The observed increase of <i>q</i><sup>2</sup> near the very bottom is probably due to the increase of velocity shear and the corresponding shear production of <i>q</i><sup>2</sup> very close to the bottom. The turbulence master scale, &ell;, was found to be constant in the main depth of the ocean, while &ell; rapidly decreases close to the bottom, as one would expect. However, in deep profiles away from the sill, the effect of topography results in the &ell; structure being unreasonably complicated as one moves towards the bottom. Values of 15 to 20 × 10<sup>&minus;4</sup> m<sup>2</sup> s<sup>-1</sup> were obtained for <i>K</i><sub>M</sub> and <i>K</i><sub>H</sub> in deep water in the vicinity of the Lifamatola Sill. These estimates agree well with basin-scale averaged values of 13.3 × 10<sup>&minus;4</sup> m<sup>2</sup> s<sup>-1</sup> found diagnostically for <i>K</i><sub>H</sub> in the deep Banda and Seram Seas (Gordon et al., 2003) and a value of 9.0 × 10<sup>&minus;4</sup> m<sup>2</sup> s<sup>-1</sup> found diagnostically for <i>K</i><sub>H</sub> for the deep Banda Sea system (van Aken et al., 1988). The somewhat higher simulated values can be explained by the presence of steep topography around the sill.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, ocean scientists have started to employ many new forms of technology as integral pieces in oceanographic data collection for the study and prediction of complex and dynamic ocean phenomena. One area of technological advancement in ocean sampling if the use of Autonomous Underwater Vehicles (AUVs) as mobile sensor plat- forms. Currently, most AUV deployments execute a lawnmower- type pattern or repeated transects for surveys and sampling missions. An advantage of these missions is that the regularity of the trajectory design generally makes it easier to extract the exact path of the vehicle via post-processing. However, if the deployment region for the pattern is poorly selected, the AUV can entirely miss collecting data during an event of specific interest. Here, we consider an innovative technology toolchain to assist in determining the deployment location and executed paths for AUVs to maximize scientific information gain about dynamically evolving ocean phenomena. In particular, we provide an assessment of computed paths based on ocean model predictions designed to put AUVs in the right place at the right time to gather data related to the understanding of algal and phytoplankton blooms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we examine the use of a Kalman filter to aid in the mission planning process for autonomous gliders. Given a set of waypoints defining the planned mission and a prediction of the ocean currents from a regional ocean model, we present an approach to determine the best, constant, time interval at which the glider should surface to maintain a prescribed tracking error, and minimizing time on the ocean surface. We assume basic parameters for the execution of a given mission, and provide the results of the Kalman filter mission planning approach. These results are compared with previous executions of the given mission scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The International Nusantara Stratification and Transport (INSTANT) program measured currents through multiple Indonesian Seas passages simultaneously over a three-year period (from January 2004 to December 2006). The Indonesian Seas region has presented numerous challenges for numerical modelers - the Indonesian Throughflow (ITF) must pass over shallow sills, into deep basins, and through narrow constrictions on its way from the Pacific to the Indian Ocean. As an important region in the global climate puzzle, a number of models have been used to try and best simulate this throughflow. In an attempt to validate our model, we present a comparison between the transports calculated from our model and those calculated from the INSTANT in situ measurements at five passages within the Indonesian Seas (Labani Channel, Lifamatola Passage, Lombok Strait, Ornbai Strait, and Timor Passage). Our Princeton Ocean Model (POM) based regional Indonesian Seas model was originally developed to analyze the influence of bottom topography on the temperature and salinity distributions in the Indonesian seas region, to disclose the path of the South Pacific Water from the continuation of the New Guinea Coastal Current entering the region of interest up to the Lifamatola Passage, and to assess the role of the pressure head in driving the ITF and in determining its total transport. Previous studies found that this model reasonably represents the general long-term flow (seasons) through this region. The INSTANT transports were compared to the results of this regional model over multiple timescales. Overall trends are somewhat represented but changes on timescales shorter than seasonal (three months) and longer than annual were not considered in our model. Normal velocities through each passage during every season are plotted. Daily volume transports and transport-weighted temperature and salinity are plotted and seasonal averages are tabulated.