945 resultados para Primates, Origin, Phylogeny
Resumo:
Chimäre Archonta? Vergleichend-morphologische Studien zur Hyolaryngealregion. Mit Brevia zur Dental- und Tarsalmorphologie. Die Dissertation greift aus phylogenetisch-systematischer Perspektive das Problem des Primatenursprungs auf. Traditionell wurde die Überordnung Archonta (= Primates + Scandentia + Dermoptera + Chiroptera) angenommen, die aufgrund molekularer Befunde nicht mehr als valide eingestuft wird. Eine Klassifikation anhand der Superordo Euarchontoglires (= Primates + Scandentia + Dermoptera + Glires) wird derzeit bevorzugt. Beide Verwandtschaftshypothesen werden in den taxonomischen Analysen berücksichtigt, um den potentiellen Einfluss der Außengruppenwahl auf die Konstellation der Euarchonta (= Primates + Dermoptera + Scandentia) zu bestimmen. Der Schwerpunkt der Untersuchung liegt in der 3D-Rekonstruktion ontogenetischer Stadien der Hyolaryngealregion diverser Spezies der Ordnungen Artiodactyla, Chiroptera, Dermoptera, Primates, Rodentia, Scandentia und Soricomorpha. Mit AMIRA® 3.1.1 konnten basierend auf histologischen Schnittserien 18 dreidimensionale Modelle der überwiegend spätfetalen Zungenbein- und Kehlkopfregion dargestellt werden. Durch das Studium der Knorpelmorphologie und der Larynx-Myologie wurden 150 Merkmale definiert und in eine MacClade®-Datenmatrix überführt. Die auf dem Parsimonie-Prinzip basierenden PAUP®-Analysen sprechen für eine Schwestergruppenbeziehung der Primates und der Dermoptera (= Primatomorpha). Die als Chimäre titulierte Überordnung Archonta wurde als Vehikel verwendet, um die Integration der Chiropteren zu ermöglichen und die Hyolaryngealforschung zu intensivieren, da auch Echolot-Peilung verwendende Taxa Bestandteil der Untersuchung waren. Die morphologischen Ähnlichkeiten des Zungenbein- und Kehlkopfapparates zwischen der basalen Form Rousettus (Pteropodidae) und dem Dermoptera-Vertreter Cynocephalus wurden als symplesiomorphe Merkmale gedeutet. Bei der Außengruppenwahl eines Rodentia-Repräsentanten hingegen konnte in Übereinstimmung mit den molekularen Befunden und nach dem Gros der Lehrmeinung die Schwestergruppenbeziehung der Primates und der Sundatheria bestätigt werden. Zwecks eines umfassenderen Ansatzes wurden im Rahmen einer „total evidence“-Methodik dental- und tarsalmorphologische Merkmale integriert. Das Resultat der Clusteranalyse, basierend auf 263 Merkmalen, modifiziert das Zwischenergebnis und befürwortet in Übereinstimmung mit molekularen Daten als Schwestergruppe der Primaten das Taxon Sundatheria (= Dermoptera + Scandentia). Damit konnte erstmals mittels eines konsequenten phylogenetisch-systematischen Ansatzes der Primaten-Grundplan hinsichtlich der Merkmalsausstattung der Hyolaryngealregion mit 27 Merkmalen rekonstruiert werden. Der Primatenursprung kann mit dem Euarchonta-Grundplan rekonstruiert werden. Für die Sundatheria wurden 12 Grundplanmerkmale definiert
Resumo:
Background and Aims It is an enduring question as to the mechanisms leading to the high diversity and the processes producing endemics with unusual morphologies in the Himalayan alpine region. In the present study, the phylogenetic relationships and origins of three such endemic genera were analysed, Dolomiaea, Diplazoptilon and Xanthopappus, all in the tribe Cardueae of Asteraceae.Methods The nuclear rDNA internal transcribed spacer (ITS) and plastid trnL-F and psbA-trnH regions of these three genera were sequenced. The same regions for other related genera in Cardueae were also sequenced or downloaded from GenBank. Phylogenetic trees were constructed from individual and combined data sets of the three types of sequences using maximum parsimony, maximum likelihood and Bayesian analyses.Key Results The phylogenetic tree obtained allowed earlier hypotheses concerning the relationships of these three endemic genera based on gross morphology to be rejected. Frolovia and Saussurea costus were deeply nested within Dolomiaea, and the strong statistical support for the Dolomiaea-Frolovia clade suggested that circumscription of Dolomiaea should be more broadly redefined. Diplazoptilon was resolved as sister to Himalaiella, and these two together are sister to Lipschitziella. The clade comprising these three genera is sister to Jurinea, and together these four genera are sister to the Dolomiaea-Frolovia clade. Xanthopappus, previously hypothesized to be closely related to Carduus, was found to be nested within a well-supported but not fully resolved Onopordum group with Alfredia, Ancathia, Lamyropappus, Olgaea, Synurus and Syreitschikovia, rather than the Cardinis group. The crude dating based on ITS sequence divergence revealed that the divergence time of Dolomiaea-Frolovia from its sister group probably occurred 13.6-12.2 million years ago (Ma), and the divergence times of the other two genera, Xanthopappus and Diplazoptilon, from their close relatives around 5.7-4.7 Ma and 2.0-1.6 Ma, respectively.Conclusions The findings provide an improved understanding of the intergeneric relationships in Cardueae. The crude calibration of lineages indicates that the uplifts of the Qiinghai -Tibetan Plateau since the Miocene might have served as a continuous stimulus for the production of these morphologically aberrant endemic elements of the Himalayan flora.
Molecular phylogeny and biogeography of langurs and leaf monkeys of South Asia (Primates: Colobinae)
Resumo:
The two recently proposed taxonomies of the langurs and leaf monkeys (Subfamily Colobinae) provide different implications to our understanding of the evolution of Nilgiri and purple-faced langurs. Groves (2001) [Groves, C.P., 2001. Primate Taxonomy. Smithsonian Institute Press, Washington], placed Nilgiri and purple-faced langurs in the genus Trachypithecus, thereby suggesting disjunct distribution of the genus Trachypithecus. [Brandon-Jones, D., Eudey, A.A., Geissmann, T., Groves, C.P., Melnick, D.J., Morales, J.C., Shekelle, M., Stewart, C.-B., 2003. Asian primate classification. Int. J. Primatol. 25, 97–162] placed these langurs in the genus Semnopithecus, which suggests convergence of morphological characters in Nilgiri and purple-faced langurs with Trachypithecus. To test these scenarios, we sequenced and analyzed the mitochondrial cytochrome b gene and two nuclear DNA-encoded genes, lysozyme and protamine P1, from a variety of colobine species. All three markers support the clustering of Nilgiri and purple-faced langurs with Hanuman langur (Semnopithecus), while leaf monkeys of Southeast Asian (Trachypithecus) form a distinct clade. The phylogenetic position of capped and golden leaf monkeys is still unresolved. It is likely that this species group might have evolved due to past hybridization between Semnopithecus and Trachypithecus clades.
Resumo:
Represented by approximately 85 species, Hemidactylus is one of the most diverse and widely distributed genera of reptiles in the world. In the Indian subcontinent, this genus is represented by 28 species out of which at least 13 are endemic to this region. Here, we report the phylogeny of the Indian Hemidactylus geckos based on mitochondrial and nuclear DNA markers sequenced from multiple individuals of widely distributed as well as endemic congeners of India. Results indicate that a majority of the species distributed in India form a distinct clade whose members are largely confined to the Indian subcontinent thus representing a unique Indian radiation. The remaining Hemidactylus geckos of India belong to two other geographical clades representing the Southeast Asian and West-Asian arid zone species. Additionally, the three widely distributed, commensal species (H. brookii, H. frenatus and H. flaviviridis) are nested within the Indian radiation suggesting their Indian origin. Dispersal-vicariance analysis also supports their Indian origin and subsequent dispersal out-of-India into West-Asian arid zone and Southeast Asia. Thus, Indian subcontinent has served as an important arena for diversification amongst the Hemidactylus geckos and in the evolution and spread of its commensal geckos. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The genetic diversity and phylogeny of 26 isolates of Bursaphelenchus xlophilus from China, Japan, Portugal and North America were investigated based on the D2/3 domain of 28S rDNA, nuclear ribosomal Internal Transcribed Spacer (ITS) sequences, and random amplified polymorphic DNA (RAPD) analysis. The genetic diversity analysis showed that the D2/3 domain of 28S rDNA of isolates of B. xlophilus from China, Portugal, Japan and the US were identical and differed at one to three nucleotides compared to those from Canada. ITS sequences of isolates from China and Portugal were the same; they differed at one or two nucleotides compared to those of Japanese isolates and at four and 23 nucleotides compared to those front the US and Canada, respectively. The phylogenetic analysis indicated that Chinese isolates share a common ancestor with one of the two Japanese clades and that the Canadian isolates form a sister group of the clade comprised of isolates from China, Portugal,Japan, and the US. The relationship between Japanese isolates and those from China was closer than with the American isolates. The Canadian isolates were the basal group of B. xylophilus. This suggests that B. xlophilus originated in North America and that the B. xylphilus that occurs in China could have been first introduced from Japan. Further analysis based on RAPD analysis revealed that the relationship among isolates from Guangdong, Zhejiang, Shandong, Anhui provinces and Nanjing was the closest, which suggests that pine wilt disease in these Chinese locales was probably dispersed from Nanjing, where this disease first occurred in China.
Resumo:
Partial (DNA) sequences were examined for one nuclear (28S rRNA gene) and one mitochondrial (16S rRNA) locus for nine species of pomatiopsid snail (Gastropoda: Rissooidea: Pomatiopsidae) from south-east Asia and south-west China. Fresh field samples were
Resumo:
The systematics of the subfamily Callitrichinae (Platyrrhini, Primates), a group of small monkeys from South America and Panama, remains an area of considerable discussion despite many investigations, there being continuing controversy over subgeneric taxonomic classifications based on morphological characters. The purpose of our research was to help elucidate the phylogenetic relationships within the monkey genus Saguinus (Callitrichinae) using a molecular approach to discover whether or not the two different sections containing hairy-faced and bare-faced species are monophyletic, whether Saguinus midas midas and Saguinus bicolor are more closely related than are S. midas midas and Saguinus midas niger, and if Saguinus fuscicollis melanoleucus and Saguinus fuscicollis weddelli really are different species. We sequenced the 957 bp ND1 mitochondrial gene of 21 Saguinus monkeys (belonging to six species and nine morphotypes) and one Cebus monkey (the outgroup) and constructed phylogenetic trees using maximum parsimony, neighbor joining, and maximum likelihood methods. The phylogenetic trees obtained divided the genus Saguinus into two groups, one containing the small-bodied species S. fuscicollis and the other, the large-bodied species S. mystax, S. leucopus, S. oedipus, S. midas, S. bicolor. The most derived taxa, S. midas and S. bicolor, grouped together, while S. fuscicollis melanoleucus and S. f. weddelli showed divergence values that did not support the division of these morphotypes into subspecies. On the other hand, S. midas individuals showed divergence compatible with the existence of three subspecies, two of them with the same morphotype as the subspecies S. midas niger. The results of our study suggest that there is at least one Saguinus subspecies that has not yet been described and that the conservation status of Saguinus species and subspecies should be carefully revised using modern molecular approaches.
Resumo:
The genes for the protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) are the products of an ancient gene duplication, which appears to predate the divergence of all extant organismal lineages. Thus, it should be possible to root a universal phylogeny based on either protein using the second protein as an outgroup. This approach was originally taken independently with two separate gene duplication pairs, (i) the regulatory and catalytic subunits of the proton ATPases and (ii) the protein synthesis elongation factors EF-Tu and EF-G. Questions about the orthology of the ATPase genes have obscured the former results, and the elongation factor data have been criticized for inadequate taxonomic representation and alignment errors. We have expanded the latter analysis using a broad representation of taxa from all three domains of life. All phylogenetic methods used strongly place the root of the universal tree between two highly distinct groups, the archaeons/eukaryotes and the eubacteria. We also find that a combined data set of EF-Tu and EF-G sequences favors placement of the eukaryotes within the Archaea, as the sister group to the Crenarchaeota. This relationship is supported by bootstrap values of 60-89% with various distance and maximum likelihood methods, while unweighted parsimony gives 58% support for archaeal monophyly.
Resumo:
We report new evidence that bears decisively on a long-standing controversy in primate systematics. DNA sequence data for the complete cytochrome b gene, combined with an expanded morphological data set, confirm the results of a previous study and again indicate that all extant Malagasy lemurs originated from a single common ancestor. These results, as well as those from other genetic studies, call for a revision of primate classifications in which the dwarf and mouse lemurs are placed within the Afro-Asian lorisiforms. The phylogenetic results, in agreement with paleocontinental data, indicate an African origin for the common ancestor of lemurs and lorises (the Strepsirrhini). The molecular data further suggest the surprising conclusion that lemurs began evolving independently by the early Eocene at the latest. This indicates that the Malagasy primate lineage is more ancient than generally thought and places the split between the two strepsirrhine lineages well before the appearance of known Eocene fossil primates. We conclude that primate origins were marked by rapid speciation and diversification sometime before the late Paleocene.
Resumo:
Self-recognition has been explored in nonlinguistic organisms by recording whether individuals touch a dye-marked area on visually inaccessible parts of their face while looking in a mirror or inspect parts of their body while using the mirror's reflection. Only chimpanzees, gorillas, orangutans, and humans over the age of approximately 2 years consistently evidence self-directed mirror-guided behavior without experimenter training. To evaluate the inferred phylogenetic gap between hominoids and other animals, a modified dye-mark test was conducted with cotton-top tamarins (Saguinus oedipus), a New World monkey species. The white hair on the tamarins' head was color-dyed, thereby significantly altering a visually distinctive species-typical feature. Only individuals with dyed hair and prior mirror exposure touched their head while looking in the mirror. They looked longer in the mirror than controls, and some individuals used the mirror to observe visually inaccessible body parts. Prior failures to pass the mirror test may have been due to methodological problems, rather than to phylogenetic differences in the capacity for self-recognition. Specifically, an individual's sensitivity to experimentally modified parts of its body may depend crucially on the relative saliency of the modified part (e.g., face versus hair). Moreover, and in contrast to previous claims, we suggest that the mirror test may not be sufficient for assessing the concept of self or mental state attribution in nonlinguistic organisms.
Resumo:
We introduce a new genetic distance for microsatellite loci, incorporating features of the stepwise mutation model, and test its performance on microsatellite polymorphisms in humans, chimpanzees, and gorillas. We find that it performs well in determining the relations among the primates, but less well than other distance measures (not based on the stepwise mutation model) in determining the relations among closely related human populations. However, the deepest split in the human phylogeny seems to be accurately reconstructed by the new distance and separates African and non-African populations. The new distance is independent of population size and therefore allows direct estimation of divergence times if the mutation rate is known. Based on 30 microsatellite polymorphisms and a recently reported average mutation rate of 5.6 x 10(-4) at 15 dinucleotide microsatellites, we estimate that the deepest split in the human phylogeny occurred about 156,000 years ago. Unlike most previous estimates, ours requires no external calibration of the rate of molecular evolution. We can use such calibrations, however, to test our estimate.
Resumo:
Living mammals can be divided into three subclasses (monotremes, marsupials and placentals) and within these, about 27 orders. Final resolution of the relationships between the orders is only now being achieved with the increased availability of deoxyribonucleic acid (DNA) sequences. Highlights include the deep division of placental mammals into African (Afrotheria), South American (Xenarthra) and northern hemisphere (Boreoeutheria) super-orders, and the finding that the once considered primitive ‘Insectivora’ and ‘Edentata’ clades, in fact, have members distributed widely among these super-orders. Another surprise finding from DNA studies has been that whale origins lie among the even-toed ungulates (Artiodactyla). Our order, Primates is most closely related to the flying lemurs and next, the tree shrews. With the mammal phylogeny becoming well resolved, it is increasingly being used as a framework for inferring evolutionary and ecological processes, such as adaptive radiation.
Resumo:
To date, a molecular phylogenetic approach has not been used to investigate the evolutionary structure of Trogoderma and closely related genera. Using two mitochondrial genes, Cytochrome Oxidase I and Cytochrome B, and the nuclear gene, 18S, the reported polyphyletic positioning of Trogoderma was examined. Paraphyly in Trogoderma was observed, with one Australian Trogoderma species reconciled as sister to all Dermestidae and the Anthrenocerus genus deeply nested within the Australian Trogoderma clade. In addition, time to most recent common ancestor for a number of Dermestidae was calculated. Based on these estimations, the Dermestidae origin exceeded 175 million years, placing the origins of this family in Pangaea.
Resumo:
In modern evolutionary divergence analysis the role of geological information extends beyond providing a timescale, to informing molecular rate variation across the tree. Here I consider the implications of this development. I use fossil calibrations to test the accuracy of models of molecular rate evolution for placental mammals, and reveal substantial misspecification associated with life history rate correlates. Adding further calibrations to reduce dating errors at specific nodes unfortunately tends to transfer underlying rate errors to adjacent branches. Thus, tight calibration across the tree is vital to buffer against rate model errors. I argue that this must include allowing maximum bounds to be tight when good fossil records permit, otherwise divergences deep in the tree will tend to be inflated by the interaction of rate errors and asymmetric confidence in minimum and maximum bounds. In the case of placental mammals I sought to reduce the potential for transferring calibration and rate model errors across the tree by focusing on well-supported calibrations with appropriately conservative maximum bounds. The resulting divergence estimates are younger than others published recently, and provide the long-anticipated molecular signature for the placental mammal radiation observed in the fossil record near the 66 Ma Cretaceous–Paleogene extinction event.