830 resultados para Price Forecasting
Resumo:
Accurate price forecasting for agricultural commodities can have significant decision-making implications for suppliers, especially those of biofuels, where the agriculture and energy sectors intersect. Environmental pressures and high oil prices affect demand for biofuels and have reignited the discussion about effects on food prices. Suppliers in the sugar-alcohol sector need to decide the ideal proportion of ethanol and sugar to optimise their financial strategy. Prices can be affected by exogenous factors, such as exchange rates and interest rates, as well as non-observable variables like the convenience yield, which is related to supply shortages. The literature generally uses two approaches: artificial neural networks (ANNs), which are recognised as being in the forefront of exogenous-variable analysis, and stochastic models such as the Kalman filter, which is able to account for non-observable variables. This article proposes a hybrid model for forecasting the prices of agricultural commodities that is built upon both approaches and is applied to forecast the price of sugar. The Kalman filter considers the structure of the stochastic process that describes the evolution of prices. Neural networks allow variables that can impact asset prices in an indirect, nonlinear way, what cannot be incorporated easily into traditional econometric models.
Resumo:
Price forecast is a matter of concern for all participants in electricity markets, from suppliers to consumers through policy makers, which are interested in the accurate forecast of day-ahead electricity prices either for better decisions making or for an improved evaluation of the effectiveness of market rules and structure. This paper describes a methodology to forecast market prices in an electricity market using an ARIMA model applied to the conjectural variations of the firms acting in an electricity market. This methodology is applied to the Iberian electricity market to forecast market prices in the 24 hours of a working day. The methodology was then compared with two other methodologies, one called naive and the other a direct forecast of market prices using also an ARIMA model. Results show that the conjectural variations price forecast performs better than the naive and that it performs slightly better than the direct price forecast.
Resumo:
Electricity price forecasting is an interesting problem for all the agents involved in electricity market operation. For instance, every profit maximisation strategy is based on the computation of accurate one-day-ahead forecasts, which is why electricity price forecasting has been a growing field of research in recent years. In addition, the increasing concern about environmental issues has led to a high penetration of renewable energies, particularly wind. In some European countries such as Spain, Germany and Denmark, renewable energy is having a deep impact on the local power markets. In this paper, we propose an optimal model from the perspective of forecasting accuracy, and it consists of a combination of several univariate and multivariate time series methods that account for the amount of energy produced with clean energies, particularly wind and hydro, which are the most relevant renewable energy sources in the Iberian Market. This market is used to illustrate the proposed methodology, as it is one of those markets in which wind power production is more relevant in terms of its percentage of the total demand, but of course our method can be applied to any other liberalised power market. As far as our contribution is concerned, first, the methodology proposed by García-Martos et al(2007 and 2012) is generalised twofold: we allow the incorporation of wind power production and hydro reservoirs, and we do not impose the restriction of using the same model for 24h. A computational experiment and a Design of Experiments (DOE) are performed for this purpose. Then, for those hours in which there are two or more models without statistically significant differences in terms of their forecasting accuracy, a combination of forecasts is proposed by weighting the best models(according to the DOE) and minimising the Mean Absolute Percentage Error (MAPE). The MAPE is the most popular accuracy metric for comparing electricity price forecasting models. We construct the combi nation of forecasts by solving several nonlinear optimisation problems that allow computation of the optimal weights for building the combination of forecasts. The results are obtained by a large computational experiment that entails calculating out-of-sample forecasts for every hour in every day in the period from January 2007 to Decem ber 2009. In addition, to reinforce the value of our methodology, we compare our results with those that appear in recent published works in the field. This comparison shows the superiority of our methodology in terms of forecasting accuracy.
Resumo:
In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.
Resumo:
Electricity price forecasting has become an important area of research in the aftermath of the worldwide deregulation of the power industry that launched competitive electricity markets now embracing all market participants including generation and retail companies, transmission network providers, and market managers. Based on the needs of the market, a variety of approaches forecasting day-ahead electricity prices have been proposed over the last decades. However, most of the existing approaches are reasonably effective for normal range prices but disregard price spike events, which are caused by a number of complex factors and occur during periods of market stress. In the early research, price spikes were truncated before application of the forecasting model to reduce the influence of such observations on the estimation of the model parameters; otherwise, a very large forecast error would be generated on price spike occasions. Electricity price spikes, however, are significant for energy market participants to stay competitive in a market. Accurate price spike forecasting is important for generation companies to strategically bid into the market and to optimally manage their assets; for retailer companies, since they cannot pass the spikes onto final customers, and finally, for market managers to provide better management and planning for the energy market. This doctoral thesis aims at deriving a methodology able to accurately predict not only the day-ahead electricity prices within the normal range but also the price spikes. The Finnish day-ahead energy market of Nord Pool Spot is selected as the case market, and its structure is studied in detail. It is almost universally agreed in the forecasting literature that no single method is best in every situation. Since the real-world problems are often complex in nature, no single model is able to capture different patterns equally well. Therefore, a hybrid methodology that enhances the modeling capabilities appears to be a possibly productive strategy for practical use when electricity prices are predicted. The price forecasting methodology is proposed through a hybrid model applied to the price forecasting in the Finnish day-ahead energy market. The iterative search procedure employed within the methodology is developed to tune the model parameters and select the optimal input set of the explanatory variables. The numerical studies show that the proposed methodology has more accurate behavior than all other examined methods most recently applied to case studies of energy markets in different countries. The obtained results can be considered as providing extensive and useful information for participants of the day-ahead energy market, who have limited and uncertain information for price prediction to set up an optimal short-term operation portfolio. Although the focus of this work is primarily on the Finnish price area of Nord Pool Spot, given the result of this work, it is very likely that the same methodology will give good results when forecasting the prices on energy markets of other countries.
Resumo:
There are many techniques for electricity market price forecasting. However, most of them are designed for expected price analysis rather than price spike forecasting. An effective method of predicting the occurrence of spikes has not yet been observed in the literature so far. In this paper, a data mining based approach is presented to give a reliable forecast of the occurrence of price spikes. Combined with the spike value prediction techniques developed by the same authors, the proposed approach aims at providing a comprehensive tool for price spike forecasting. In this paper, feature selection techniques are firstly described to identify the attributes relevant to the occurrence of spikes. A simple introduction to the classification techniques is given for completeness. Two algorithms: support vector machine and probability classifier are chosen to be the spike occurrence predictors and are discussed in details. Realistic market data are used to test the proposed model with promising results.
Resumo:
In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A novel hybrid approach, combining wavelet transform, particle swarm optimization, and adaptive-network-based fuzzy inference system, is proposed in this paper for short-term electricity prices forecasting in a competitive market. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Finally, conclusions are duly drawn.
Resumo:
In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn.
Resumo:
Työn päätavoite on selvittää kuinka erityisesti sähkön markkinahinnan ennustamiseen ja johdannaismarkkinoiden tietämykseen perustuva lyhyen tähtäimen sähköjohdannaisten hyödyntäminen tapahtuu teollisessa energianhallinnassa. Tätä aihetta lähestytään luomalla prosessi lyhyen tähtäimen sähköjohdannaisten hyödyntämiselle. Prosessi esitellään ja selvitetään aina lähtökohdista todelliseen kaupankäyntiin asti erillisen esimerkkitehtaan avulla.Lyhyen tähtäimen sähköjohdannaisten hyödyntäminen teollisessa energianhallinnassa perustuu pääosin tulevaisuuden odotuksiin sähkön markkinahinnan kehittymisestä sekä tehtaiden operatiiviseen tilanteeseen. Operatiiviseen tilanteeseen perustuva lyhyen tähtäimen sähköjohdannaisten kaupankäynti on pääasiassa pitkän tähtäimen suojausten sopeuttamista lyhyelle tähtäimelle sopivaksi.Hinnan ennustamisella on suuri rooli lyhyen tähtäimen sähköjohdannaisten hyödyntämisprosessissa. Työssä esitelty hinnan ennustamismalli on sopiva päivä- ja viikkotason Nord Poolin Elspot -systeemihinnan ennustamiseen. Elspot -systeemihinnan ennustamismalli on suunniteltu käytännönläheiseksi ja sen perustana ovat todelliset fysikaaliset ja mitattavat suureet. Futuurimarkkinatietämys on tarpeen lyhyen tähtäimen johdannaisia käytettäessä. Työssä tutkitaan yleisiä markkinoiden odotuksia ja futuurimarkkinoiden tietoisuuden kehittymistä koskien tulevaa vallitsevaa tilannetta. Työssä luodaan myös työkalu, mikä auttaa kaupan laatijaa muodostamaan suuntaa-antavat todennäköisyydet eri hintanäkemyksille ja paikallistamaan mahdolliset markkinoiden epätodennäköiset hintaodotukset.Kokemukset Elspot -systeemihinnan ennustamismallin soveltamisesta ovat lupaavia. Lisäksi havainnot futuurimarkkinoiden käyttäytymisestä Nord Poolissa ja muodostettu työkalu suuntaa-antavien todennäköisyyksien selvittämiseksi auttavat kaupan laatijaa päätöksenteossa. Lyhyen tähtäimen sähköjohdannaisten hyödyntäminen teollisessa energianhallinnassa on periaatteessa mahdollista esitellyn prosessin avulla, vaikka täydellinen käyttöönotto vaatisi vielä joitakin järjestelyjä. Keskittymällä tilanteisiin jotka työssä kuvatulla prosessilla ovat hoidettavissa, työssä määritellyllä menettelyllä on mahdollisuudet saavuttaa epäedullisen hintakehityksen riskin väheneminen ja parempi taloudellinen tulos teollisen energianhallinnan sähkökaupankäynnissä.
Resumo:
The Thesis is dedicated to development of an operative tool to support decision making in after spot trading on the Nordic electricity market. The basics of the Nordic electricity market, trading mechanisms on the spot and after spot markets are presented in the Thesis. Mathematical equations that describe electricity balance condition in the power system are offered. The main driving factors that impact deviation of actual electricity balance from the scheduled one (object) in the power system have been explored and mathematically defined. The behavioral model of the object and principal trends in change of state of the object under an impact of the driving factors are determined with the help of regression analysis made in Microsoft Office Excel. The behavioral model gives an indication for the total regulation volume (Elbas trades volume, volume of regulation market, balance power) for a certain hour that serves as the base input in estimating prices on the after spot markets. Proposals for development of methodologies of forecasting the after spot electricity prices are offered.
Resumo:
A predição do preço da energia elétrica é uma questão importante para todos os participantes do mercado, para que decidam as estratégias mais adequadas e estabeleçam os contratos bilaterais que maximizem seus lucros e minimizem os seus riscos. O preço da energia tipicamente exibe sazonalidade, alta volatilidade e picos. Além disso, o preço da energia é influenciado por muitos fatores, tais como: demanda de energia, clima e preço de combustíveis. Este trabalho propõe uma nova abordagem híbrida para a predição de preços de energia no mercado de curto prazo. Tal abordagem combina os filtros autorregressivos integrados de médias móveis (ARIMA) e modelos de Redes Neurais (RNA) numa estrutura em cascata e utiliza variáveis explanatórias. Um processo em dois passos é aplicado. Na primeira etapa, as variáveis explanatórias são preditas. Na segunda etapa, os preços de energia são preditos usando os valores futuros das variáveis exploratórias. O modelo proposto considera uma predição de 12 passos (semanas) a frente e é aplicada ao mercado brasileiro, que possui características únicas de comportamento e adota o despacho centralizado baseado em custo. Os resultados mostram uma boa capacidade de predição de picos de preço e uma exatidão satisfatória de acordo com as medidas de erro e testes de perda de cauda quando comparado com técnicas tradicionais. Em caráter complementar, é proposto um modelo classificador composto de árvores de decisão e RNA, com objetivo de explicitar as regras de formação de preços e, em conjunto com o modelo preditor, atuar como uma ferramenta atrativa para mitigar os riscos da comercialização de energia.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS