973 resultados para Previsão de preço da energia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hoje no mercado brasileiro de eletricidade, o preço da energia convencional é composto pela soma do valor do Preço de Liquidação das Diferenças (PLD) divulgado pela Câmara de Comercialização de Energia Elétrica (CCEE) semanalmente com o valor do Spread negociado bilateralmente no mercado à vista (mercado de curto prazo), resultante do equilíbrio entre oferta e demanda. Em alguns momentos, o valor do Spread chega a representar mais de 100% do custo total da energia. Este trabalho faz uma análise do mercado brasileiro, bem como, de alguns mercados no exterior de energia elétrica e destaca os pontos que tem influência direta, na formação do Spread da energia convencional e como isso afeta a decisão de contratação dos agentes. Além disso, o trabalho busca encontrar correlações entre dados divulgados, como carga e oferta de energia, com o ágio negociado no mercado de curto prazo, buscando entender o real impacto de cada um desses fatores e explicar as grandes variações já observadas. Sugere-se também um modelo de regressão linear múltipla para a projeção de valores do ágio. Para tanto, foram utilizadas informações proveniente de um banco de dados de cotações de negócios efetivamente realizados no curto prazo desde janeiro de 2011 até julho de 2014, bem como informações retiradas da CCEE e Operador Nacional do Sistema (ONS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A predição do preço da energia elétrica é uma questão importante para todos os participantes do mercado, para que decidam as estratégias mais adequadas e estabeleçam os contratos bilaterais que maximizem seus lucros e minimizem os seus riscos. O preço da energia tipicamente exibe sazonalidade, alta volatilidade e picos. Além disso, o preço da energia é influenciado por muitos fatores, tais como: demanda de energia, clima e preço de combustíveis. Este trabalho propõe uma nova abordagem híbrida para a predição de preços de energia no mercado de curto prazo. Tal abordagem combina os filtros autorregressivos integrados de médias móveis (ARIMA) e modelos de Redes Neurais (RNA) numa estrutura em cascata e utiliza variáveis explanatórias. Um processo em dois passos é aplicado. Na primeira etapa, as variáveis explanatórias são preditas. Na segunda etapa, os preços de energia são preditos usando os valores futuros das variáveis exploratórias. O modelo proposto considera uma predição de 12 passos (semanas) a frente e é aplicada ao mercado brasileiro, que possui características únicas de comportamento e adota o despacho centralizado baseado em custo. Os resultados mostram uma boa capacidade de predição de picos de preço e uma exatidão satisfatória de acordo com as medidas de erro e testes de perda de cauda quando comparado com técnicas tradicionais. Em caráter complementar, é proposto um modelo classificador composto de árvores de decisão e RNA, com objetivo de explicitar as regras de formação de preços e, em conjunto com o modelo preditor, atuar como uma ferramenta atrativa para mitigar os riscos da comercialização de energia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo propõe um método alternativo para a previsão de demanda de energia elétrica, através do desenvolvimento de um modelo de estimação baseado em redes neurais artificiais. Tal método ainda é pouco usado na estimativa de demanda de energia elétrica, mas tem se mostrado promissor na resolução de problemas que envolvem sistemas de potência. Aqui são destacados os principais fatores que devem pautar a modelagem de um sistema baseada em redes neurais artificiais, que são: seleção das variáveis de entrada; quantidade de variáveis; arquitetura da rede; treinamento; previsão da saída. O modelo ora apresentado foi desenvolvido a partir de uma amostra de 125 municípios do Estado do Rio Grande do Sul (Brasil), nos anos de 1999 a 2002. Como variáveis de entrada, foram selecionados a temperatura ambiente (média e desvio-padrão anual), a umidade relativa do ar (média e desvio-padrão anual), o PIB anual e a população anual de cada município incluído na amostra. Para validar a proposta apresentada, são mostrados resultados baseados nas simulações com o modelo proposto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente estudo apresenta um modelo de previsão do preço e do volume comercializado no mercado transoceânico de minério de ferro. Para tanto, foi desenvolvido um modelo VAR, utilizando, além das variáveis endógenas com um lag de diferença, o preço do petróleo Brent e um índice de produção industrial. Após testar raiz unitária das variáveis e constatar que nenhuma era estacionária, o teste de cointegração atestou que existia relação de longo prazo entre as mesmas que era estacionária, afastando a possibilidade de uma regressão espúria. Como resultado, a modelagem VAR apresentou um modelo consistente, com elevada aderência para a previsão do preço e do volume negociado de minério de ferro no mercado transoceânico, não obstante ele tenha apresentado alguma imprecisão no curto prazo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As técnicas qualitativas disponiveis para a modelagem de cenários têm sido reconhecidas pela extrema limitação, evidenciada no principio das atividades do processo, como a fase inicial de concepção. As principais restrições têm sido: • inexistência de uma ferramenta que teste a consistência estrutural interna do modelo, ou pela utilização de relações econômicas com fundamentação teórica mas sem interface perfeita com o ambiente, ou pela adoção de variações binárias para testes de validação; • fixação "a priori" dos possíveis cenários, geralmente classificados sob três adjetivos - otimista, mais provável e pessimista - enviesados exatamente pelos atributos das pessoas que fornecem esta informação. o trabalho trata da utilização de uma ferramenta para a interação entre uma técnica que auxilia a geração de modelos, suportada pela lógica relacional com variações a quatro valores e expectativas fundamentadas no conhecimento do decisor acerca do mundo real. Tem em vista a construção de um sistema qualitativo de previsão exploratória, no qual os cenários são obtidos por procedimento essencialmente intuitivo e descritivos, para a demanda regional por eletricidade. Este tipo de abordagem - apresentada por J. Gershuny - visa principalmente ao fornecimento de suporte metodológico para a consistência dos cenários gerados qualitativamente. Desenvolvimento e estruturação do modelo são realizados em etapas, partindo-se de uma relação simples e prosseguindo com a inclusão de variáveis e efeitos que melhoram a explicação do modelo. o trabalho apresenta um conjunto de relações para a demanda regional de eletricidade nos principais setores de consumo residencial, comercial e industrial bem como os cenários resultantes das variações mais prováveis das suas componentes exógenas. Ao final conclui-se que esta técnica é útil em modelos que: • incluem variáveis sociais relevantes e de dificil mensuração; • acreditam na importância da consistência externa entre os resultados gerados pelo modelo e aqueles esperados para a tomada de decisões; • atribuem ao decisor a responsabilidade de compreender a fundamentação da estrutura conceitual do modelo. Adotado este procedimento, o autor aqui recomenda que o modelo seja validado através de um procedimento iterativo de ajustes com a participação do decisor. As técnicas quantitativas poderão ser adotadas em seguida, tendo o modelo como elemento de consistência.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A capacidade de prever a produção de energia eólica com precisão num parque eólico é de extrema relevância tanto do ponto de vista económico bem como de controlo e estabilidade da rede elétrica. Vários e diferentes métodos têm sido utilizados para este propósito, como os físicos, estatísticos, lógica difusa e redes neuronais artificiais. Os dados disponíveis dos parques eólicos contêm ruído e leituras inesperadas em relação às entradas disponíveis. Lidar com estes dados não é uma tarefa simples mas, neste trabalho, as Redes Neuronais Artificiais são usadas para prever a potência gerada baseada em medições locais do vento. Os resultados mostram que as Redes Neuronais Artificiais são uma ferramenta que deve ser considerada nestas difíceis condições, uma vez que elas proporcionam uma precisão razoável nas suas previsões.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: