1000 resultados para Previsão de inflação


Relevância:

100.00% 100.00%

Publicador:

Resumo:

No Brasil, o regime de metas para inflação foi instituído em julho de 1999, pelo Banco Central do Brasil, sendo o principal objetivo ancorar as expectativas de mercado. Este regime levou a uma queda da inflação e também a uma convergência das expectativas. Quando comparadas com a inflação ocorrida, as expectativas do mercado melhoraram nos últimos anos, porém, continuam com um erro ainda expressivo para o prazo de 6 meses. Em linhas gerais, a contribuição desta dissertação é de mostrar que existem modelos simples que conseguem prever o comportamento da inflação em médio prazo (6 meses). Um modelo ARIMA do IPCA obtém projeções acumuladas de inflação melhores que as projeções do mercado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo dessa dissertação é analisar as variáveis importantes da inflação para a decisão de política econômica do Banco Central. Considerando a importância de reações forward looking das autoridades monetárias num regime de metas de inflação, estudam-se alguns modelos de projeção de inflação de curto prazo para verificar qual modelo possui maior capacidade de previsão. Com o objetivo de entender a dinâmica inflacionária brasileira ao longo desses anos desde a implementação do sistema de metas de inflação, procura-se analisar a dinâmica da inércia inflacionária e do repasse cambial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho compara modelos de séries temporais para a projeção de curto prazo da inflação brasileira, medida pelo Índice de Preços ao Consumidor Amplo (IPCA). Foram considerados modelos SARIMA de Box e Jenkins e modelos estruturais em espaço de estados, estimados pelo filtro de Kalman. Para a estimação dos modelos, foi utilizada a série do IPCA na base mensal, de março de 2003 a março de 2012. Os modelos SARIMA foram estimados no EVIEWS e os modelos estruturais no STAMP. Para a validação dos modelos para fora da amostra, foram consideradas as previsões 1 passo à frente para o período de abril de 2012 a março de 2013, tomando como base os principais critérios de avaliação de capacidade preditiva propostos na literatura. A conclusão do trabalho é que, embora o modelo estrutural permita, decompor a série em componentes com interpretação direta e estudá-las separadamente, além de incorporar variáveis explicativas de forma simples, o desempenho do modelo SARIMA para prever a inflação brasileira foi superior, no período e horizonte considerados. Outro importante aspecto positivo é que a implementação de um modelo SARIMA é imediata, e previsões a partir dele são obtidas de forma simples e direta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho investiga e analisa as diferenças das taxas anuais de inflação realizadas com relação às previsões dos agentes econômicos do mercado para um ano à frente. Os índices analisados foram o IPCA, IPA-M, IGP-M e o IGP-DI. Referente à previsão dos agentes para cada índice, foi feito uma análise estatística e uma análise de séries temporais através do modelo ARIMA. Este último explicou o erro de previsão dos agentes econômicos através de valores passados, ou defasados, do próprio erro de previsão, além dos termos estocásticos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As estimações das taxas de inflação são de fundamental importância para os gestores, pois as decisões de investimento estão intimamente ligadas a elas. Contudo, o comportamento inflacionário tende a ser não linear e até mesmo caótico, tornando difícil a sua correta estimação. Essa característica do fenômeno pode tornar imprecisos os modelos mais simples de previsão, acessíveis às pequenas organizações, uma vez que muitos deles necessitam de grandes manipulações de dados e/ou softwares especializados. O presente artigo tem por objetivo avaliar, por meio de análise formal estatística, a eficácia das redes neurais artificiais (RNA) na previsão da inflação, dentro da realidade de organizações de pequeno porte. As RNA são ferramentas adequadas para mensurar os fenômenos inflacionários, por se tratar de aproximações de funções polinomiais, capazes de lidar com fenômenos não lineares. Para esse processo, foram selecionados três modelos básicos de redes neurais artificiais Multi Layer Perceptron, passíveis de implementação a partir de planilhas eletrônicas de código aberto. Os três modelos foram testados a partir de um conjunto de variáveis independentes sugeridas por Bresser-Pereira e Nakano (1984), com defasagem de um, seis e doze meses. Para tal, foram utilizados testes de Wilcoxon, coeficiente de determinação R² e o percentual de erro médio dos modelos. O conjunto de dados foi dividido em dois, sendo um grupo usado para treinamento das redes neurais artificiais, enquanto outro grupo era utilizado para verificar a capacidade de predição dos modelos e sua capacidade de generalização. Com isso, o trabalho concluiu que determinados modelos de redes neurais artificiais têm uma razoável capacidade de predição da inflação no curto prazo e se constituem em uma alternativa razoável para esse tipo de mensuração.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: