169 resultados para Prepubertal
Resumo:
High energy intake and excessive body fatness impair mammogenesis in prepubertal ruminants. High energy intake and excessive fatness also increase serum leptin. Our objective was to determine if an infusion of leptin decreases proliferation of mammary epithelial cells of prepubertal heifers in vivo. Ovine leptin at 100 mu g/quarter per d with or without 10 mu g of insulin-like growth factor (IGF)-I was infused via the teat canal into mammary glands of prepubertal dairy heifers; contralateral quarters were used as controls. After 7 d of treatment, bromodeoxyuridine was infused intravenously and heifers were slaughtered similar to 2 h later. Tissue from 3 regions of the mammary parenchyma was collected and immunostained for bromodeoxyuridine (BrdU), proliferating cell nuclear antigen (Ki-67), and caspase-3. Leptin decreased the number of mammary epithelial cells in the S-phase of the cell cycle by 48% in IGF-I-treated quarters and by 19% in saline-treated quarters. Leptin did not alter the number of mammary epithelial cells within the cell cycle, as indicated by Ki-67 labeling. Caspase-3 immunostaining within the mammary parenchyma was very low in these heifers, but leptin significantly increased labeling in saline-treated quarters. Leptin enhanced SOCS-3 expression in IGF-I-treated quarters but did not alter SOCS-1 or SOCS-5 expression. We conclude that a high concentration of leptin in the bovine mammary gland reduces proliferation of mammary epithelial cells. The reduced proliferation is accompanied by an increase in SOCS-3 expression, suggesting a possible mechanism for leptin inhibition of IGF-I action. Whether leptin might be a physiological regulator of mammogenesis remains to be determined.
Resumo:
An early and accurate recognition of success in treating obesity may increase the compliance of obese children and their families to intervention programs. This observational, prospective study aimed to evaluate the ability and the time to detect a significant reduction of adiposity estimated by body mass index (BMI), percentage of fat mass (%FM), and fat mass index (FMI) during weight management in prepubertal obese children.
Resumo:
A sex steroid-dependent modulation of the immune function in mammals is accepted, and evidence suggests that while estrogens enhance, androgens inhibit the immune response. The aim of this study was to explore in the adult male rat the effect of either neonatal flutamide (FTM) treatment or prepubertal orchidectomy (ODX) on endocrine markers in the basal condition and peripheral tumor necrosis factor alpha (TNFα) levels during inflammatory stress. For these purposes, (1) 5-day-old male rats were subcutaneously injected with either sterile vehicle alone or containing 1.75 mg FTM, and (2) 25-day-old male rats were sham operated or had ODX. Rats were sacrificed (at 100 days of age) in the basal condition for determination of peripheral metabolite levels. Additional rats were intravenously injected with bacterial lipopolysaccharide (LPS; 25 μg/kg body weight, i.v.) and bled for up to 4 h. Data indicate that (1) ODX increased peripheral glucocorticoid levels and reduced those of testosterone, whereas FTM-treated rats displayed low circulating leptin concentrations, and (2) LPS-induced TNFα secretion in plasma was significantly enhanced in the FTM and ODX groups. Our study supports that neonatal FTM treatment affected adiposity function, and adds data maintaining that androgens have a suppressive role in proinflammatory cytokine release in plasma during inflammation.
Resumo:
OBJECTIVE: To see whether a fat-rich (50%) evening meal promoted fat oxidation and a different spontaneous food intake on the following day at breakfast than a meal with a lower fat content (20%) in 10 prepubertal obese girls. RESEARCH METHODS AND PROCEDURES: The postabsorptive and postprandial (10.5 hours) energy expenditure after a low-fat (LF) (20% fat, 68% carbohydrate, 12% protein) and an isocaloric (2.1 MJ) and isoproteic high-fat (HF; 50% fat, 38% carbohydrate, 12% protein) meal were measured by indirect calorimetry. RESULTS: Fat oxidation was not significantly different after the two meals [LF, 31 +/- 9 vs. HF, 35 +/- 9 g/10.5 hours, p = not significant (NS)]. The girls oxidized 1.8 +/- 0.9 times more fat than that ingested (11.1 grams) with the LF meal vs. 0.3 +/- 0.3 times more fat than that ingested (27.1 grams) with the HF meal (p < 0.001). Carbohydrate oxidation was significantly higher after an LF than an HF meal (39 +/- 12 vs. 29 +/- 9 g/10.5 hours, p < 0,05). At breakfast, the girls spontaneously ingested a similar amount of energy (1.5 +/- 0.7 vs. 1.5 +/- 0.6 MJ, p = NS) and macronutrient proportions (fat, 23% vs. 26%, p = NS; protein, 9% vs. 10%; carbohydrate, 68% vs. 64%,) independently of their having eaten an HF or an LF dinner. DISCUSSION: An HF dinner did not stimulate fat oxidation, and no compensatory effect in spontaneous food intake was observed during breakfast the following morning. Cumulated total fat oxidation after dinner was higher than total fat ingested at dinner, but a much larger negative fat balance was observed after the LF meal. Spontaneous energy and nutrient intakes at breakfast were similar after LF and HF isocaloric, isoproteic dinners. This study points out the lack of sensitivity of short-term fat balance to subsequently readjust fat intake and emphasizes the importance of an LF meal to avoid transient positive fat imbalance.
Resumo:
The purpose of this study was to assess the validity of two common methods used to assess energy intake. A 3-day weighed dietary record and a dietary history were collected and compared with the total daily energy expenditure (TEE) assessed by the heart rate method in a group of 12 obese and 12 nonobese prepubertal children (mean age 9.3 +/- 1.1 years vs 9.3 +/- 0.4 years). The TEE value was higher in obese than in nonobese children (9.89 +/- 1.08 vs 8.13 +/- 1.39 MJ/day; p < 0.01). Energy intake assessed by the dietary record was significantly lower than TEE in the obese children (7.06 +/- 0.98 MJ/day; p < 0.001) but comparable to TEE in the nonobese children (8.03 +/- 0.99 MJ/day; p = not significant). Energy intake assessed by diet history was lower than TEE in the obese children (8.37 +/- 1.35 MJ/day, p < 0.05) but close to TEE in the nonobese children (8.64 +/- 1.54 MJ/day, p = not significant). These results suggest that obese children underreport food intake and that the dietary record and the diet history are not valid means of assessing energy intake in obese prepubertal children.
Resumo:
We measured body composition and energy expenditure during walking and running on a treadmill in 40 prepubertal children: 23 obese children (9.3 +/- 1.1 years of age; 46 +/- 10 kg (mean +/- SD)) and 17 nonobese matched control children (9.2 +/- 0.6 years of age; 30 +/- 5 kg). Energy expenditure was assessed by indirect calorimetry with a standard open-circuit method. At the same speed of exercise, the energy expenditure was significantly (p < 0.01) greater in obese than in control children, in both boys and girls. Expressed per kilogram of body weight or per kilogram of fat-free mass, the energy expenditure was comparable in the two groups. Obese children had a significantly (p < 0.01) larger pulmonary ventilatory response to exercise than did control children. Heart rate was comparable in boys and girls combined but significantly higher (p < 0.05) in obese subjects, if boys and girls were analyzed separately. These data indicate that walking and running are energetically more expensive for obese children than for children of normal body weight. The knowledge of these energy costs could be useful in devising a physical activity program to be used in the treatment of obese children.
Resumo:
BACKGROUND: Obesity is becoming more frequent in children; understanding the extent to which this condition affects not only carbohydrate and lipid metabolism but also protein metabolism is of paramount importance. OBJECTIVE: We evaluated the kinetics of protein metabolism in obese, prepubertal children in the static phase of obesity. DESIGN: In this cross-sectional study, 9 obese children (x +/- SE: 44+/-4 kg, 30.9+/-1.5% body fat) were compared with 8 lean (28+/-2 kg ,16.8+/-1.2% body fat), age-matched (8.5+/-0.2 y) control children. Whole-body nitrogen flux, protein synthesis, and protein breakdown were calculated postprandially over 9 h from 15N abundance in urinary ammonia by using a single oral dose of [15N]glycine; resting energy expenditure (REE) was assessed by indirect calorimetry (canopy) and body composition by multiple skinfold-thickness measurements. RESULTS: Absolute rates of protein synthesis and breakdown were significantly greater in obese children than in control children (x +/- SE: 208+/-24 compared with 137+/-14 g/d, P < 0.05, and 149+/-20 compared with 89+/-13 g/d, P < 0.05, respectively). When these variables were adjusted for fat-free mass by analysis of covariance, however, the differences between groups disappeared. There was a significant relation between protein synthesis and fat-free mass (r = 0.83, P < 0.001) as well as between protein synthesis and REE (r = 0.79, P < 0.005). CONCLUSIONS: Obesity in prepubertal children is associated with an absolute increase in whole-body protein turnover that is consistent with an absolute increase in fat-free mass, both of which contribute to explaining the greater absolute REE in obese children than in control children.
Resumo:
Fat balance plays an important role in fat mass regulation. The mechanisms by which fat intake and fat oxidation are controlled are poorly understood. In particular, no data are available on the origin, i.e. exogenous (meal intake) or endogenous (adipose tissue lipolysis), of fat oxidized during the postprandial period in children and the proportion between these two components. In this study we tested the hypothesis that there is a relationship between adiposity and the oxidative fate of fat taken with a mixed meal in a group of 15 children with a wide range of fat mass (9-64%). The combination of stable isotope analysis ([13C] enriched fatty acids added to a mixed meal) and indirect calorimetry allowed us to differentiate between the exogenous and endogenous resting fat oxidation rate over the 9-h postprandial period. During the 9 hours of the postprandial period, the children oxidized an amount of fat comparable to that ingested with the meal [26.8 (+/-2.31) g vs. 26.4 (+/-2.3) g, respectively, P = ns]. On average, exogenous fat oxidation [2.99 (+/-3.0) g/9 h] represented 10.8% (+/-0.9) of total fat oxidation. Endogenous fat oxidation, calculated as the difference between total fat oxidation and exogenous fat oxidation, averaged 23.4 (+/-1.9) g/9 h and represented 88.2% (+/-0.9) of total fat oxidation. Endogenous fat oxidation as well as exogenous fat oxidation were highly correlated to total fat oxidation (r = 0.83, P < 0.001; r = 0.84, P < 0.001, respectively). Exogenous fat oxidation expressed as a proportion of total fat oxidation was directly related to fat mass (r = 0.56, P < 0.03), while endogenous fat oxidation expressed as a proportion of total fat oxidation was inversely related (r = -0.57, P < 0.03) to the degree of adiposity. The enhanced exogenous fat oxidation observed when adiposity increases in the dynamic phase of obesity may be viewed as a protective mechanism to prevent further increase in fat mass and hence to maintain fat oxidation at a sufficient rate when the body is exposed to a high amount of dietary fat, as typically encountered in obese children.
Resumo:
To assess the effect of weight loss on resting metabolic rate (RMR), the energy expenditure of eight obese prepubertal children (age 9 +/- 1 years; weight 48.7 +/- 9.1 kg; BMI 25.3 +/- 3.9) and of 14 age-matched children of normal body weight (age 9 +/- 1 years; weight 28.8 +/- 5.6 kg; BMI 16.5 +/- 1.7) was measured by indirect calorimetry. The obese children were reinvestigated after a mean weight loss of 5.4 +/- 1.2 kg induced by a six-months mixed hypocaloric diet. Before slimming, the obese group showed a higher daily energy intake than the control group (10.40 +/- 3.45 MJ/day vs 7.97 +/- 2.02 MJ/day respectively; P less than 0.05) but a similar value was observed per unit fat-free mass (FFM) (0.315 +/- 0.032 MJ/kgFFM/day vs 0.329 +/- 0.041 MJ/kgFFM/day respectively). The average RMR of the obese children was greater than that of the control group (5217 +/- 531 kJ/day vs 4477 +/- 506 kJ/day) but similar after adjusting for FFM (4728 +/- 3102 kJ/day vs 4899 +/- 3102 kJ/day). Weight loss resulted in a reduction in RMR (5217 +/- 531 kJ/day vs 4874 +/- 820 kJ/day), each kg of weight loss being accompanied by a decrease of RMR of 64 kJ (15.3 kcal) per day. The changes in RMR induced by weight loss paralleled the changes in FFM. No difference was found in average RQ in obese children vs controls (0.85 +/- 0.03 vs 0.87 +/- 0.03 respectively) and in the obese children before and after weight loss (0.87 +/- 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
OBJECTIVE: To study the relationship between the energy expenditure for activity (EEAct), the level of activity and adiposity in a group of 9-year-old boys (n = 28) with different body composition (body weight, 38 +/- 10 kg [range, 23 to 66 kg]; fat mass, 23% +/- 10% [range, 8% to 42%]). METHODS: Total energy expenditure (TEE) was measured by means of the heart-rate monitoring method. EEAct was calculated as TEE-(REE+0.1 TEE), where REE is the postabsorptive resting energy expenditure and 0.1 TEE corresponds to the postprandial thermogenesis (approximately 10% of TEE). RESULTS: TEE, REE, and EEAct were 9388 +/- 1859, 5154 +/- 642, and 3295 +/- 1356 l J/day, respectively. Daily time devoted to sedentary and nonsedentary activities averaged 290 +/- 155 minutes (range, 69 to 621) and 534 +/- 150 minutes (range, 180 to 783), respectively. Time spent on sedentary activities was directly proportional to fat mass percentage (r = 0.46; p < 0.05). It was the only variable, among the free-living physical-activity [EEAct, TEE/(REE+0.1 TEE) ratio, time spent in nonsedentary and sedentary activities] variables, which remained significantly in the multiple step-down regression analysis final equation (r = 0.46; p < 0.05). CONCLUSIONS: The positive relationship between adiposity and time spent on sedentary activities in 9-year-old boys suggests the importance of the role played by muscular activity, at least in the maintenance of obesity in childhood. Prepubertal children should be encouraged to spend less time on sedentary activities to treat and prevent their obesity.
Resumo:
The resting metabolic rate (RMR) and the thermic effect of a meal (TEM) were measured in a group of 16 prepubertal (8.8 +/- 0.3 y) obese children (43.6 +/- 9.2 kg) and compared with a group of 10 age-matched (8.6 +/- 0.4 y), normal-weight children (31.0 +/- 6.0 kg). The RMR was higher in the obese than in the control children (4971 +/- 485 vs 4519 +/- 326 kJ/d, P < 0.05); after the RMR was adjusted for the effect of fat-free mass (FFM) the values were not significantly different (4887 +/- 389 vs 4686 +/- 389 kJ/d). The thermic response to a liquid mixed meal, expressed as a percentage of the energy content of the meal, was significantly lower in obese than in control children (4.4 +/- 1.2% vs 5.9 +/- 1.7%, P < 0.05). The blunted TEM shown by the obese children could favor weight gain and suggests that the defect in thermogenesis reported in certain obese adults may have already originated early in life.
Resumo:
The purpose of this study was to measure postabsorptive fat oxidation at rest and to assess the association between fat mass and fat oxidation rate in prepubertal children, who were assigned to two groups: 35 obese children (weight, 44.5 +/- 9.7 kg; fat mass; 31.7 +/- 5.4%) and 37 nonobese children (weight, 30.8 +/- 6.8 kg; fat mass, 17.5 +/- 6.7%). Postabsorptive fat oxidation expressed in absolute value was significantly higher in obese than in nonobese children (31.4 +/- 9.7 mg/min vs 21.9 +/- 10.2 mg/min; p < 0.001) but not when adjusted for fat-free mass by analysis of covariance with fat-free mass as the covariate (28.2 +/- 10.6 mg/min vs 24.9 +/- 10.5 mg/min). In obese children and in the total group, fat mass and fat oxidation were significantly correlated (r = 0.65; p < 0.001). The slope of the relationship indicated that for each 10 kg additional fat mass, resting fat oxidation increased by 18 gm/day. We conclude that obese prepubertal children have a higher postabsorptive rate of fat oxidation than nonobese children. This metabolic process may favor the achievement of a new equilibrium in fat balance, opposing further adipose tissue gain.
Resumo:
The aim was to explore whether the origin of carbohydrate oxidation (exogenous compared with endogenous carbohydrate) after consumption of a mixed meal was influenced by obesity in children. Ten obese prepubertal children 8 y of age (44.2 +/- 3.6 kg) were studied over 9.5 h and compared with eight normal-weight, matched control children (28.5 +/- 1.6 kg). They were fed a mixed meal containing naturally enriched [13C]carbohydrate (cane sugar and popcorn) providing 55% of the daily energy requirement as measured by 24-h resting metabolic rate. Total carbohydrate oxidation was calculated by indirect calorimetry (hood system) whereas exogenous carbohydrate oxidation was estimated from carbon dioxide production (VCO2), the isotopic enrichment of breath 13CO2, and the abundance of [13C]carbohydrate in the meal ingested. The time course of 13CO2 in breath-measured over 570 min-followed a similar pattern in both groups. Although total carbohydrate oxidation was not significantly different among the two groups, exogenous carbohydrate utilization was significantly greater (P < 0.03) and endogenous carbohydrate oxidation was significantly lower (P < 0.05) in obese compared with control children. In addition, the rate of exogenous carbohydrate oxidation expressed as a proportion of total carbohydrate oxidation was positively related to the body fat of the children (r = 0.68, P < 0.01). The study suggests that in the postprandial phase, a smaller proportion of carbohydrate oxidation is accounted for by glycogen breakdown in obese children. The sparing of endogenous glycogen may result from decreased glycogen turnover already present at an early age.
Resumo:
Prepubertal gilts were fed with a diet containing zearalenone (ZEA) in a concentration of 0.75 mg/kg for 21 days. The effects of this mycotoxin on morphologic aspects of the reproductive tract as well as on complete blood count (CBC), serum biochemistry analysis (SBA) and humoral immune response against sheep red blood cells (SRBC) were evaluated. There was a significant increase (P<0.05) on the reproductive tract weight, vulvar area, height of the epithelial cells of endometrial glands and uterine mucosa. These results showed the ability of this nonsteroidal mycotoxin in mimicking actions of 17β estradiol at the concentration of 0.75mg/kg. No changes in weight gain, CBC, SBA parameters and humoral response against SRBC were observed.
Resumo:
Studies are performed in developing techniques/procedures that provide greater reproductive performance in farm animals, including pigs. In this sense, the study of gilts reproductive organs at different oestrus cycle stages for assessing the presence of abnormalities and/or other parameters that may affect the future animal fertility is important. In order to evaluate the morphological, morphometric and histomorphometric features of ovaries, uterus and uterine tubes (UTs) characteristics of prepubertal gilts at different oestrus cycle stages, reproductive tracts from 48 animals immediately after slaughter were obtained. After, the structures were dissected and removed, and the ovaries were used for classification of oestrus cycle stage of each gilt in follicular phase (FP) and luteal phase (FL). Then, morphometric evaluations of ovaries, UTs, uterine horns and uterine body were performed. Besides that, medial segments of UTs and uterus were fixed in Bouin solution, processed and included in paraffin, when histological sections of 5.0 micrometers (µm) were obtained and stained with Hematoxylin and Eosin. Histomorphometric analyzes using image capture system and specific software were performed. Afterwards, data were submitted to Student's t test for assessment the statistical differences (P<0.05) between the two different oestrus cycle stages (FP × LP) and between the placement of reproductive structures (right × left antimer). Among the gilts evaluated, 35 were in the FP and 13 in LP. There was no difference (P>0.05) between morphometric parameters of ovaries, UTs and uterus of gilts in FP and LP. Likewise, in respect to the placement of reproductive structures, both in the oestrus cycle stages, as in the general average, there was no difference (P>0.05). Regarding the histomorphometric variables, gilts classified in FP presented a higher (P<0.05) height of glandular and UT epithelium compared to animals in LP. On the other hand, the diameter of endometrial glands was higher (P<0.05) in gilts at LP compared to FP. Furthermore, gilts in LP presented a higher (P<0.05) proportion of endometrium occupied by glands, whereas animals in FP had a higher (P<0.05) proportion of connective tissue and blood vessels. In conclusion, in prepubertal gilts, the histomorphometric parameters as endometrial glands diameter, the height of glandular epithelium and of UT epithelium and the proportion of endometrium occupied by connective tissue, besides the glands and blood vessels varies through the oestrus cycle, possibly under the influence of ovarian steroids.