947 resultados para Preparation and characterisation of xanthates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium Phosphate ceramics have been widely used in tissue engineering due to their excellent biocompatibility and biodegradability. In the physiological environment, they are able to gradually degrade, absorbed and promote bone growth. Ultimately, they are capable of replacing damaged bone with new tissue. However, their low mechanical properties limit calcium phosphate ceramics in load-bearing applications. To obtain sufficient mechanical properties as well as high biocompatibility is one of the main focuses in biomaterials research. Therefore, the current project focuses on the preparation and characterization of porous tri-calcium phosphate (TCP) ceramic scaffolds. Hydroxapatite (HA) was used as the raw material, and normal calcium phosphate bioglass was added to adjust the ratio between calcium and phosphate. It was found that when 20% bioglass was added to HA and sintered at 1400oC for 3 hours, the TCP scaffold was obtained and this was confirmed by X-ray diffraction (XRD) analysis. Test results have shown that by applying this method, TCP scaffolds have significantly higher compressive strength (9.98MPa) than those made via TCP powder (<3MPa). Moreover, in order to further increase the compressive strength of TCP scaffolds, the samples were then coated with bioglass. For normal bioglass coated TCP scaffold, compressive strength was 16.69±0.5MPa; the compressive strength for single layer mesoporous bioglass coated scaffolds was 15.03±0.63MPa. In addition, this project has also concentrated on sizes and shapes effects; it was found that the cylinder scaffolds have more mechanical property than the club ones. In addition, this project performed cell culture within scaffold to assess biocompatibility. The cells were well distributed in the scaffold, and the cytotoxicity test was performed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay. The Alkaline Phosphatase (Alp) activity of human bone marrow mesenchymal stem cell system (hBMSCs) seeded on scaffold expressed higher in vitro than that in the positive control groups in osteogenic medium, which indicated that the scaffolds were both osteoconductive and osteoinductive, showing potential value in bone tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to prepare and characterise composites of Soluble potato starch or hydroxypropylated maize starch with milled sugar cane fibre (i.e., bagasse). Prior to the preparation of the starch-fibre composites, the ‘cast’ and the ‘hot-pressed’ methods were investigated for the preparation of starch films in order to select the preferred preparation method. The physicochemical and mechanical properties of films conditioned at different relative humidities (RHs) were determined through moisture uptake, crystallinity, glass transition temperature (Tg), thermal properties, molecular structure and tensile tests. Hot-pressed starch films have ~5.5% less moisture, twice the crystallinity (~59%), higher Tg and Young’s modulus than cast starch films. The VH-type starch polymorph was observed to be present in the hot-pressed films. The addition of bagasse fibre to both starch types, prepared by hot-pressing, reduced the moisture uptake by up to 30% (cf., cast film) at 58% RH. The addition of 5 wt% fibre increased the tensile strength and Young’s modulus by 16% and 24% respectively. It significantly decreased the tensile strain by ~53%. Fourier Transform infrared (FT-IR) spectroscopy revealed differences in hydrogen bonding capacity between the films with fibre and those without fibre. The results have been explained on the basis of the intrinsic properties of starch and bagasse fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report the preparation and characterisation of nanometer-sized TiO2, CdO, and ZnO semiconductor particles trapped in zeolite NaY. Preparation of these particles was carried out via the traditional ion exchange method and subsequent calcination procedure. It was found that the smaller cations, i.e., Cd2+ and Zn2+ could be readily introduced into the SI′ and SII′ sites located in the sodalite cages, through ion exchange; while this is not the case for the larger Ti species, i.e., Ti monomer [TiO]2+ or dimer [Ti2O3]2+ which were predominantly dispersed on the external surface of zeolite NaY. The subsequent calcination procedure promoted these Ti species to migrate into the internal surface of the supercages. These semiconductor particles confined in NaY zeolite host exhibited a significant blue shift in the UV-VIS absorption spectra, in contrast to the respective bulk semiconductor materials, due to the quantum size effect (QSE). The particle sizes calculated from the UV-VIS optical absorption spectra using the effective mass approximation model are in good agreement with the atomic absorption data.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerium dioxide (ceria) nanoparticles have been the subject of intense academic and industrial interest. Ceria has a host of applications but academic interest largely stems from their use in the modern automotive catalyst but it is also of interest because of many other application areas notably as the abrasive in chemical-mechanical planarisation of silicon substrates. Recently, ceria has been the focus of research investigating health effects of nanoparticles. Importantly, the role of non-stoichiometry in ceria nanoparticles is implicated in their biochemistry. Ceria has well understood non-stoichiometry based around the ease of formation of anion vacancies and these can form ordered superstructures based around the fluorite lattice structure exhibited by ceria. The anion vacancies are associated with localised or small polaron states formed by the electrons that remain after oxygen desorption. In simple terms these electrons combine with Ce4+ states to form Ce3+ states whose larger ionic radii is associated with a lattice expansion compared to stoichiometric CeO2. This is a very simplistic explanation and greater defect chemistry complexity is suggested by more recent work. Various authors have shown that vacancies are mobile and may result in vacancy clustering. Ceria nanoparticles are of particular interest because of the high activity and surface area of small particulates. The sensitivity of the cerium electronic band structure to environment would suggest that changes in the properties of ceria particles at nanoscale dimensions might be expected. Notably many authors report a lattice expansion with reducing particle size (largely confined to sub-10 nm particles). Most authors assign increased lattice dimensions to the presence of a surface stable Ce2O3 type layer at low nanoparticle dimensions. However, our understanding of oxide nanoparticles is limited and their full and quantitative characterisation offers serious challenges. In a series of chemical preparations by ourselves we see little evidence of a consistent model emerging to explain lattice parameter changes with nanoparticle size. Based on these results and a review of the literature it is worthwhile asking if a model of surface enhanced defect concentration is consistent with known cerium/cerium oxide chemistries, whether this is applicable to a range of different synthesis methods and if a more consistent description is possible. In Chapter one the science of cerium oxide is outlined including the crystal structure, defect chemistry and different oxidation states available. The uses and applications of cerium oxide are also discussed as well as modelling of the lattice parameter and the doping of the ceria lattice. Chapter two describes both the synthesis techniques and the analytical methods employed to execute this research. Chapter three focuses on high surface area ceria nano-particles and how these have been prepared using a citrate sol-gel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures. X-ray diffraction methods were used to determine their lattice parameters. The particles sizes were also assessed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and BET, and, the lattice parameter was found to decrease with decreasing particle size. The results are discussed in light of the role played by surface tension effects. Chapter four describes the morphological and structural characterization of crystalline CeO2 nanoparticles prepared by forward and reverse precipitation techniques and compares these by powder x-ray diffraction (PXRD), nitrogen adsorption (BET) and high resolution transmission electron microscopy (HRTEM) analysis. The two routes give quite different materials although in both cases the products are essentially highly crystalline, dense particulates. It was found that the reverse precipitation technique gave the smallest crystallites with the narrowest size dispersion. This route also gave as-synthesised materials with higher surface areas. HRTEM confirmed the observations made from PXRD data and showed that the two methods resulted in quite different morphologies and surface chemistries. The forward route gives products with significantly greater densities of Ce3+ species compared to the reverse route. Data are explained using known precipitation chemistry and kinetic effects. Chapter five centres on the addition of terbia to ceria and has been investigated using XRD, XRF, XPS and TEM. Good solid solutions were formed across the entire composition range and there was no evidence for the formation of mixed phases or surface segregation over either the composition or temperature range investigated. Both Tb3+ and Tb4+ ions exist within the solution and the ratios of these cations are consistent with the addition of Tb8O15 to the fluorite ceria structure across a wide range of compositions. Local regions of anion vacancy ordering may be visible for small crystallites. There is no evidence of significant Ce3+ ion concentrations formed at the surface or in the bulk by the addition of terbia. The lattice parameter of these materials was seen to decrease with decreasing crystallite size. This is consistent with increased surface tension effects at small dimension. Chapter six reviews size related lattice parameter changes and surface defects in ceria nanocrystals. Ceria (CeO2) has many important applications, notably in catalysis. Many of its uses rely on generating nanodimensioned particles. Ceria has important redox chemistry where Ce4+ cations can be reversibly reduced to Ce3+ cations and associated anion vacancies. The significantly larger size of Ce3+ (compared with Ce4+) has been shown to result in lattice expansion. Many authors have observed lattice expansion in nanodimensioned crystals (nanocrystals), and these have been attributed to the presence of stabilized Ce3+ -anion vacancy combinations in these systems. Experimental results presented here show (i) that significant, but complex changes in the lattice parameter with size can occur in 2-500 nm crystallites, (ii) that there is a definitive relationship between defect chemistry and the lattice parameter in ceria nanocrystals, and (iii) that the stabilizing mechanism for the Ce3+ -anion vacancy defects at the surface of ceria nanocrystals is determined by the size, the surface status, and the analysis conditions. In this work, both lattice expansion and a more unusual lattice contraction in ultrafine nanocrystals are observed. The lattice deformations seen can be defined as a function of both the anion vacancy (hydroxyl) concentration in the nanocrystal and the intensity of the additional pressure imposed by the surface tension on the crystal. The expansion of lattice parameters in ceria nanocrystals is attributed to a number of factors, most notably, the presence of any hydroxyl moieties in the materials. Thus, a very careful understanding of the synthesis combined with characterization is required to understand the surface chemistry of ceria nanocrystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three supported La0.8Sr0.2MnO3+x catalysts were prepared, one supported on lanthanum-stabilised alumina and two supported on a NiAl2O4 spinel. The catalysts were characterised using X-ray diffraction, transmission electron microscopy and surface area measurements following heat-treatments at temperatures up to 1200 degreesC in air. In the alumina-supported catalyst, a reaction occurred between the active phase and the support at high temperatures, indicating that these materials would be unsuitable for high temperature catalytic combustion. Only in the NiAl2O4-supported catalysts were the supported perovskite phases found to be stable at high temperature. These catalysts showed good methane combustion activity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two different procedures were compared for the preparation of cellulose nanofibres from flax and microcrystalline cellulose (MCC). The first involved a combination of high energy ball milling, acid hydrolysis and ultrasound, whilst the second employed a high pressure homogenisation technique, with and without various pre-treatments of the fibrous feedstock. The geometry and microstructure of the cellulose nanofibres were observed by SEM and TEM and their particle size measured using image analysis and dynamic light scattering. Aspect ratios of nanofibres made by microfluidisation were orders of magnitude greater than those achieved by acid hydrolysis. FTIR, XRD and TGA were used to characterise changes to chemical functionality, cellulose crystallinity and thermal stability resulting from the approaches used for preparing the cellulose nanofibres. Hydrolysis using sulphuric acid gave rise to esterification of the cellulose nanofibres, a decrease in crystallinity with MCC, but an increase with flax, together with an overall reduction in thermal stability. Increased shear history of flax subjected to multiple passes through the microfluidiser, raised both cellulose nanofibril crystallinity and thermal stability, the latter being strongly influenced by acid, alkaline and, most markedly, silane pretreatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation and characterization of thick (9 mum), clear, mechanically robust and photocatalytically active films of nanocrystalline anatase titania are described. XRD and SEM analysis show the films comprise 13 nm particles of anatase TiO2. Thin (54 nm) films of the 'paste' TiO2, along with sol-gel titania films made by a more traditional route are also prepared and characterised. All titania films mediate the photocatalytic destruction of stearic acid with a quantum yield of 0.0016 +/- 0.0003. using either 365 nm (i.e. BLB) or 254 nm (germicidal) light. P25 TiO2 films also appear to mediate the same process with a similar formal quantum efficiency. Of all the films tested, the thick paste TiO2 films are the most ideally suited for use with near UV light, for reasons which are discussed. All the titania films tested exhibit photoinduced superhydrophilicity.