935 resultados para Preimage attack
Resumo:
In this paper we present concrete collision and preimage attacks on a large class of compression function constructions making two calls to the underlying ideal primitives. The complexity of the collision attack is above the theoretical lower bound for constructions of this type, but below the birthday complexity; the complexity of the preimage attack, however, is equal to the theoretical lower bound. We also present undesirable properties of some of Stam’s compression functions proposed at CRYPTO ’08. We show that when one of the n-bit to n-bit components of the proposed 2n-bit to n-bit compression function is replaced by a fixed-key cipher in the Davies-Meyer mode, the complexity of finding a preimage would be 2 n/3. We also show that the complexity of finding a collision in a variant of the 3n-bits to 2n-bits scheme with its output truncated to 3n/2 bits is 2 n/2. The complexity of our preimage attack on this hash function is about 2 n . Finally, we present a collision attack on a variant of the proposed m + s-bit to s-bit scheme, truncated to s − 1 bits, with a complexity of O(1). However, none of our results compromise Stam’s security claims.
Resumo:
We show that the LASH-x hash function is vulnerable to attacks that trade time for memory, including collision attacks as fast as 2(4x/11) and preimage attacks as fast as 2(4x/7). Moreover, we briefly mention heuristic lattice based collision attacks that use small memory but require very long messages that are expected to find collisions much faster than 2 x/2. All of these attacks exploit the designers’ choice of an all zero IV. We then consider whether LASH can be patched simply by changing the IV. In this case, we show that LASH is vulnerable to a 2(7x/8) preimage attack. We also show that LASH is trivially not a PRF when any subset of input bytes is used as a secret key. None of our attacks depend upon the particular contents of the LASH matrix – we only assume that the distribution of elements is more or less uniform.
Resumo:
We present some improved analytical results as part of the ongoing work on the analysis of Fugue-256 hash function, a second round candidate in the NIST’s SHA3 competition. First we improve Aumasson and Phans’ integral distinguisher on the 5.5 rounds of the final transformation of Fugue-256 to 16.5 rounds. Next we improve the designers’ meet-in-the-middle preimage attack on Fugue-256 from 2480 time and memory to 2416. Finally, we comment on possible methods to obtain free-start distinguishers and free-start collisions for Fugue-256.
Resumo:
We analyse the security of iterated hash functions that compute an input dependent checksum which is processed as part of the hash computation. We show that a large class of such schemes, including those using non-linear or even one-way checksum functions, is not secure against the second preimage attack of Kelsey and Schneier, the herding attack of Kelsey and Kohno and the multicollision attack of Joux. Our attacks also apply to a large class of cascaded hash functions. Our second preimage attacks on the cascaded hash functions improve the results of Joux presented at Crypto’04. We also apply our attacks to the MD2 and GOST hash functions. Our second preimage attacks on the MD2 and GOST hash functions improve the previous best known short-cut second preimage attacks on these hash functions by factors of at least 226 and 254, respectively. Our herding and multicollision attacks on the hash functions based on generic checksum functions (e.g., one-way) are a special case of the attacks on the cascaded iterated hash functions previously analysed by Dunkelman and Preneel and are not better than their attacks. On hash functions with easily invertible checksums, our multicollision and herding attacks (if the hash value is short as in MD2) are more efficient than those of Dunkelman and Preneel.
Resumo:
In this paper, we analyze the SHAvite-3-512 hash function, as proposed and tweaked for round 2 of the SHA-3 competition. We present cryptanalytic results on 10 out of 14 rounds of the hash function SHAvite-3-512, and on the full 14 round compression function of SHAvite-3-512. We show a second preimage attack on the hash function reduced to 10 rounds with a complexity of 2497 compression function evaluations and 216 memory. For the full 14-round compression function, we give a chosen counter, chosen salt preimage attack with 2384 compression function evaluations and 2128 memory (or complexity 2448 without memory), and a collision attack with 2192 compression function evaluations and 2128 memory.
Resumo:
Many RFID protocols use cryptographic hash functions for their security. The resource constrained nature of RFID systems forces the use of light weight cryptographic algorithms. Tav-128 is one such 128-bit light weight hash function proposed by Peris-Lopez et al. for a low-cost RFID tag authentication protocol. Apart from some statistical tests for randomness by the designers themselves, Tav-128 has not undergone any other thorough security analysis. Based on these tests, the designers claimed that Tav-128 does not posses any trivial weaknesses. In this article, we carry out the first third party security analysis of Tav-128 and show that this hash function is neither collision resistant nor second preimage resistant. Firstly, we show a practical collision attack on Tav-128 having a complexity of 237 calls to the compression function and produce message pairs of arbitrary length which produce the same hash value under this hash function. We then show a second preimage attack on Tav-128 which succeeds with a complexity of 262 calls to the compression function. Finally, we study the constituent functions of Tav-128 and show that the concatenation of nonlinear functions A and B produces a 64-bit permutation from 32-bit messages. This could be a useful light weight primitive for future RFID protocols.
Resumo:
In the modern era of information and communication technology, cryptographic hash functions play an important role in ensuring the authenticity, integrity, and nonrepudiation goals of information security as well as efficient information processing. This entry provides an overview of the role of hash functions in information security, popular hash function designs, some important analytical results, and recent advances in this field.
Resumo:
In this paper we attack round-reduced Keccak hash function with a technique called rotational cryptanalysis. We focus on Keccak variants proposed as SHA-3 candidates in the NIST’s contest for a new standard of cryptographic hash function. Our main result is a preimage attack on 4-round Keccak and a 5-round distinguisher on Keccak-f[1600] permutation — the main building block of Keccak hash function.
Resumo:
Integral attacks are well-known to be effective against byte-based block ciphers. In this document, we outline how to launch integral attacks against bit-based block ciphers. This new type of integral attack traces the propagation of the plaintext structure at bit-level by incorporating bit-pattern based notations. The new notation gives the attacker more details about the properties of a structure of cipher blocks. The main difference from ordinary integral attacks is that we look at the pattern the bits in a specific position in the cipher block has through the structure. The bit-pattern based integral attack is applied to Noekeon, Serpent and present reduced up to 5, 6 and 7 rounds, respectively. This includes the first attacks on Noekeon and present using integral cryptanalysis. All attacks manage to recover the full subkey of the final round.
Resumo:
High-rate flooding attacks (aka Distributed Denial of Service or DDoS attacks) continue to constitute a pernicious threat within the Internet domain. In this work we demonstrate how using packet source IP addresses coupled with a change-point analysis of the rate of arrival of new IP addresses may be sufficient to detect the onset of a high-rate flooding attack. Importantly, minimizing the number of features to be examined, directly addresses the issue of scalability of the detection process to higher network speeds. Using a proof of concept implementation we have shown how pre-onset IP addresses can be efficiently represented using a bit vector and used to modify a “white list” filter in a firewall as part of the mitigation strategy.
Resumo:
This special issue of Popular Communication examines the impact of the global financial crisis and recession on differnt aspects of global and regional media and the cultural industries, changing practices of media production, as well as media consumption, and the interplay of economic challenges and technological change.
Resumo:
Distributed Denial-of-Service (DDoS) attacks continue to be one of the most pernicious threats to the delivery of services over the Internet. Not only are DDoS attacks present in many guises, they are also continuously evolving as new vulnerabilities are exploited. Hence accurate detection of these attacks still remains a challenging problem and a necessity for ensuring high-end network security. An intrinsic challenge in addressing this problem is to effectively distinguish these Denial-of-Service attacks from similar looking Flash Events (FEs) created by legitimate clients. A considerable overlap between the general characteristics of FEs and DDoS attacks makes it difficult to precisely separate these two classes of Internet activity. In this paper we propose parameters which can be used to explicitly distinguish FEs from DDoS attacks and analyse two real-world publicly available datasets to validate our proposal. Our analysis shows that even though FEs appear very similar to DDoS attacks, there are several subtle dissimilarities which can be exploited to separate these two classes of events.
Resumo:
Background/aims: Access to appropriate health care following an acute cardiac event is important for positive outcomes. The aim of the Cardiac ARIA index was to derive an objective, comparable, geographic measure reflecting access to cardiac services across Australia. Methods: Geographic Information Systems (GIS) were used to model a numeric-alpha index based on acute management from onset of symptoms to return to the community. Acute time frames have been calculated to include time for ambulance to arrive, assess and load patient, and travel to facility by road 40–80 kph. Results: The acute phase of the index was modelled into five categories: 1 [24/7 percutaneous cardiac intervention (PCI) ≤1 h]; 2 [24/7 PCI 1–3 h, and PCI less than an additional hour to nearest accident and emergency room (A&E)]: 3 [Nearest A&E ≤3 h (no 24/7 PCI within an extra hour)]: 4 [Nearest A&E 3–12 h (no 24/7 PCI within an extra hour)]: 5 [Nearest A&E 12–24 h (no 24/7 PCI within an extra hour)]. Discharge care was modelled into three categories based on time to a cardiac rehabilitation program, retail pharmacy, pathology services, hospital, GP or remote clinic: (A) all services ≤30 min; (B) >30 min and ≤60 min; (C) >60 min. Examples of the index indicate that the majority of population locations within capital cities were category 1A; Alice Springs and Byron Bay were 3A; and the Northern Territory town of Maningrida had minimal access to cardiac services with an index ranking of 5C. Conclusion: The Cardiac ARIA index provides an invaluable tool to inform appropriate strategies for the use of scarce cardiac resources.
Resumo:
Talk of a possible Israeli strike on Iran’s nuclear facilities has re-ignited debate over the right of self-defence under international law. Some academics, including Anthony D'Amato and Alan Dershowitz, have claimed that an attack on Iran would be a permissible act of self-defence. Others, such as Kevin Jon Heller, argue that such action would be a clear breach of international law. So, who is correct? Would military action against Iran be legal or illegal?