878 resultados para Prediction by neural networks
Resumo:
This paper proposes artificial neural networks in combination with wavelet transform for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. Results from a real-world case study are presented. A comparison is carried out, taking into account the results obtained with other approaches. Finally, conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Global temperature variations between 1861 and 1984 are forecast usingsregularization networks, multilayer perceptrons and linearsautoregression. The regularization network, optimized by stochasticsgradient descent associated with colored noise, gives the bestsforecasts. For all the models, prediction errors noticeably increasesafter 1965. These results are consistent with the hypothesis that thesclimate dynamics is characterized by low-dimensional chaos and thatsthe it may have changed at some point after 1965, which is alsosconsistent with the recent idea of climate change.s
Resumo:
This communication proposes the use of neural networks in the prediction of residual concentrations of hydrogen peroxide from the treatment of effluents through Advanced Oxidative Processes (AOP's), in particular, the photo-Fenton process. To verify the efficiency of the oxidative process, the Chemical Oxygen Demand (COD) parameter, the values of which may be modified by the presence of oxidizing agents such as residual hydrogen peroxide, is frequently taken in account. The analysis of the H2O2 interference was performed by spectrophotometry at 450 nm wavelength, via the monitoring of the reaction of ammonia with metavanadate. The results of the hydrogen peroxide residual concentration were modeled via a feedforward neural network, with the correlation coefficients between actual and predicted values above 0.96, indicating good prediction capacity.
Resumo:
In this paper the use of neural networks for the control of dynamical systems is considered. Both identification and feedback control aspects are discussed as well as the types of system for which neural networks can provide a useful technique. Multi-layer Perceptron and Radial Basis function neural network types are looked at, with an emphasis on the latter. It is shown how basis function centre selection is a critical part of the implementation process and that multivariate clustering algorithms can be an extremely useful tool for finding centres.
Resumo:
This work presents a procedure for transient stability analysis and preventive control of electric power systems, which is formulated by a multilayer feedforward neural network. The neural network training is realized by using the back-propagation algorithm with fuzzy controller and adaptation of the inclination and translation parameters of the nonlinear function. These procedures provide a faster convergence and more precise results, if compared to the traditional back-propagation algorithm. The adaptation of the training rate is effectuated by using the information of the global error and global error variation. After finishing the training, the neural network is capable of estimating the security margin and the sensitivity analysis. Considering this information, it is possible to develop a method for the realization of the security correction (preventive control) for levels considered appropriate to the system, based on generation reallocation and load shedding. An application for a multimachine power system is presented to illustrate the proposed methodology. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper uses artificial neural networks (ANN) to compute the resonance frequencies of rectangular microstrip antennas (MSA), used in mobile communications. Perceptron Multi-layers (PML) networks were used, with the Quasi-Newton method proposed by Broyden, Fletcher, Goldfarb and Shanno (BFGS). Due to the nature of the problem, two hundred and fifty networks were trained, and the resonance frequency for each test antenna was calculated by statistical methods. The estimate resonance frequencies for six test antennas were compared with others results obtained by deterministic and ANN based empirical models from the literature, and presented a better agreement with the experimental values.
Resumo:
This paper present an environmental contingency forecasting tool based on Neural Networks (NN). Forecasting tool analyzes every hour and daily Sulphur Dioxide (SO2) concentrations and Meteorological data time series. Pollutant concentrations and meteorological variables are self-organized applying a Self-organizing Map (SOM) NN in different classes. Classes are used in training phase of a General Regression Neural Network (GRNN) classifier to provide an air quality forecast. In this case a time series set obtained from Environmental Monitoring Network (EMN) of the city of Salamanca, Guanajuato, México is used. Results verify the potential of this method versus other statistical classification methods and also variables correlation is solved.
Resumo:
In developing neural network techniques for real world applications it is still very rare to see estimates of confidence placed on the neural network predictions. This is a major deficiency, especially in safety-critical systems. In this paper we explore three distinct methods of producing point-wise confidence intervals using neural networks. We compare and contrast Bayesian, Gaussian Process and Predictive error bars evaluated on real data. The problem domain is concerned with the calibration of a real automotive engine management system for both air-fuel ratio determination and on-line ignition timing. This problem requires real-time control and is a good candidate for exploring the use of confidence predictions due to its safety-critical nature.
Resumo:
This paper presents an analysis of different techniques that is designed to aid a researcher in determining which of the classification techniques would be most appropriate to choose the ridge, robust and linear regression methods for predicting outcomes for specific quasi-stationary process.
Resumo:
The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.
Resumo:
Natural rubber (NR) is a raw material largely used by the modern industry; however, it is common that chemical modifications must be made to NR in order to improve properties such as hydrophobicity or mechanical resistance. This work deals with the correlation of properties of NR modified with dimethylaminoethylmethacrylate or methylmethacrylate as grafting agents. Dynamic-mechanical behavior and stress/strain relations are very important properties because they furnish essential characteristics of the material such as glass transition temperature and rupture point. These properties are concerned with different physical principles; for this reason, normally they are not related to each other. This work showed that they can be correlated by artificial neural networks (ANN). So, from one type of assay, the properties that as a rule only could be obtained from the other can be extracted by ANN correlation. POLYM. ENG. SCI., 49:499-505, 2009. (c) 2009 Society of Plastics Engineers
Resumo:
This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.
Resumo:
The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.
Resumo:
Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.