927 resultados para Precursor Lesion
Resumo:
Objective A cluster of vulvar cancer exists in young Aboriginal women living in remote communities in Arnhem Land, Australia. A genetic case–control study was undertaken involving 30 cases of invasive vulvar cancer and its precursor lesion, high-grade vulvar intraepithelial neoplasia (VIN), and 61 controls, matched for age and community of residence. It was hypothesized that this small, isolated population may exhibit increased autozygosity, implicating recessive effects as a possible mechanism for increased susceptibility to vulvar cancer. Methods Genotyping data from saliva samples were used to identify runs of homozygosity (ROH) in order to calculate estimates of genome-wide homozygosity. Results No evidence of an effect of genome-wide homozygosity on vulvar cancer and VIN in East Arnhem women was found, nor was any individual ROH found to be significantly associated with case status. This study found further evidence supporting an association between previous diagnosis of CIN and diagnosis of vulvar cancer or VIN, but found no association with any other medical history variable. Conclusions These findings do not eliminate the possibility of genetic risk factors being involved in this cancer cluster, but rather suggest that alternative analytical strategies and genetic models should be explored.
Resumo:
Individuals with inherited deficiency in DNA mismatch repair(MMR) (Lynch syndrome) LS are predisposed to different cancers in a non-random fashion. Endometrial cancer (EC) is the most common extracolonic malignancy in LS. LS represents the best characterized form of hereditary nonpolyposis colorectal carcinoma (HNPCC). Other forms of familial non-polyposis colon cancer exist, including familial colorectal cancer type X (FCCX). This syndrome resembles LS, but MMR gene defects are excluded and the predisposition genes are unknown so far. To address why different organs are differently susceptible to cancer development, we examined molecular similarities and differences in selected cancers whose frequency varies in LS individuals. Tumors that are common (colorectal, endometrial, gastric) and less common (brain, urological) in LS were characterized for MMR protein expression, microsatellite instability (MSI), and by altered DNA methylation. We also studied samples of histologically normal endometrium, endometrial hyperplasia,and cancer for molecular alterations to identify potential markers that could predict malignant transformation in LS and sporadic cases. Our results suggest that brain and kidney tumors follow a different pathway for cancer development than the most common LS related cancers.Our results suggest also that MMR defects are detectable in endometrial tissues from a proportion of LS mutation carriers prior to endometrial cancer development. Traditionally (complex) atypical hyperplasia has been considered critical for progression to malignancy. Our results suggest that complex hyperplasia without atypia is equally important as a precursor lesion of malignancy. Tumor profiles from Egypt were compared with colorectal tumors from Finland to evaluate if there are differences specific to the ethnic origin (East vs.West). Results showed for the first time a distinct genetic and epigenetic signature in the Egyptian CRC marked by high methylation of microsatellite stable tumors associated with advanced stage, and low frequency of Wnt signaling activation, suggesting a novel pathway. DNA samples from FCCX families were studied with genome wide linkage analysis using microsatellite markers. Selected genes from the linked areas were tested for possible mutations that could explain predisposition to a large number of colon adenomas and carcinomas seen in these families. Based on the results from the linkage analysis, a number of areas with tentative linkage were identified in family 20. We narrowed down these areas by additional microsatellite markers to found a mutation in the BMPR1A gene. Sequencing of an additional 17 FCCX families resulted in a BMPR1A mutation frequency of 2/18 families (11%). Clarification of the mechanisms of the differential tumor susceptibility in LS increases the understanding of gene and organ specific targets of MMR deficiency. While it is generally accepted that widespread MMR deficiency and consequent microsatellite instability (MSI) drives tumorigenesis in LS, the timing of molecular alterations is controversial. In particular, it is important to know that alterations may occur several years before cancer formation, at stages that are still histologically regarded as normal. Identification of molecular markers that could predict the risk of malignant transformation may be used to improve surveillance and cancer prevention in genetically predisposed individuals. Significant fractions of families with colorectal and/or endometrial cancer presently lack molecular definition altogether. Our findings expand the phenotypic spectrum of BMPR1A mutations and, for the first time, link FCCX families to the germline mutation of a specific gene. In particular, our observations encourage screening of additional families with FCCX for BMPR1A mutation, which is necessary in obtaining a reliable estimate of the share of BMPR1A-associated cases among all FCCX families worldwide. Clinically, the identification of predisposing mutations enables targeted cancer prevention in proven mutation carriers and thereby reduces cancer morbidity and mortality in the respective families.
Resumo:
Background: Intestinal metaplasia (IM) is an important precursor lesion in the development of gastric cancer ( GC). The aim of this study was to investigate genetic factors previously linked to GC risk for their possible association with IM. A total of 18 polymorphisms in 14 candidate genes were evaluated in a Singapore-Chinese population at high risk of developing GC.
Resumo:
Purpose: The role of genetic susceptibility to esophageal adenocarcinorna and its precursor lesion Barrett esophagus has not been fully elucidated. This study investigated the effect of polymorphisms in the manganese superoxide dismutase (MnSOD) and NAD(P)H:quinone oxicloreductase 1 (NQO1) genes in modulating the risk of developing Barrett esophagus or esophageal adenocarcinoma. Methods: A total of 584 patients (146 esophagitis, 200 Barrett esophagus, 144 esophageal adenocarcinoma, and 94 controls) were genotyped for the MnSOD C14T and NQO1 C609T polymorphisms using polymerase chain reaction and restriction fragment length polymorphism analysis. Results: The NQO1 TT genotype was less common in Barrett esophagus (2.0%) and esophageal adenocarcinoma (1.4%) patients, compared with both esophagitis patients (7.6%) and controls (5.4%). After adjustment for sex, age, body mass index, reflux symptoms, and smoking status, patients with the homozygous TT genotype had a 4.5-fold decreased risk of developing Barrett esophagus (odds ratio = 0.22, 95% confidence interval = 0.07-0.76, P = 0.01) and a 6.2-fold decreased risk of esophageal adenocarcinorna (odds ratio = 0.16, 95% confidence intervals = 0.03-0.94, P = 0.04) compared with individuals with the TC and CC genotypes. No significant differences between groups were observed for the MnSOD polymorphism (P = 0.289). Conclusions: Overall, the results of this study suggest that the NQO1 TT genotype may offer protection from reflux complications such as Barrett esophagus and esophageal adenocarcinoma.
Resumo:
Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the "p53 signature," or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes of pro-migratory genes in p53(R273H) MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53(R273H) with KRAS(G12V) activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53(R273H) in the fallopian tube will improve understanding of changes at the earliest stage of transformation. This information can help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the "p53 signature" thereby, improving survival rates.
Resumo:
OBJECTIVES: Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced risk of esophageal adenocarcinoma. Epidemiological studies examining the association between NSAID use and the risk of the precursor lesion, Barrett’s esophagus, have been inconclusive.
METHODS: We analyzed pooled individual-level participant data from six case-control studies of Barrett’s esophagus in the Barrett’s and Esophageal Adenocarcinoma Consortium (BEACON). We compared medication use from 1474 patients with Barrett’s esophagus separately with two control groups: 2256 population-based controls and 2018 gastroesophageal reflux disease (GERD) controls. Study-specific odds ratios (OR) and 95% confidence intervals (CI) were estimated using multivariable logistic regression models and were combined using a random effects meta-analytic model.
RESULTS: Regular (at least once weekly) use of any NSAIDs was not associated with the risk of Barrett’s esophagus (vs. population-based controls, adjusted OR = 1.00, 95% CI = 0.76–1.32; I2=61%; vs. GERD controls, adjusted OR = 0.99, 95% CI = 0.82–1.19; I2=19%). Similar null findings were observed among individuals who took aspirin or non-aspirin NSAIDs. We also found no association with highest levels of frequency (at least daily use) and duration (≥5 years) of NSAID use. There was evidence of moderate between-study heterogeneity; however, associations with NSAID use remained non-significant in “leave-one-out” sensitivity analyses.
CONCLUSIONS: Use of NSAIDs was not associated with the risk of Barrett’s esophagus. The previously reported inverse association between NSAID use and esophageal adenocarcinoma may be through reducing the risk of neoplastic progression in patients with Barrett’s esophagus.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To characterize proteomic changes found in Barrett's adenocarcinoma and its premalignant stages, the proteomic profiles of histologically defined precursor and invasive carcinoma lesions were analyzed by MALDI imaging MS. For a primary proteomic screening, a discovery cohort of 38 fresh frozen Barrett's adenocarcinoma patient tissue samples was used. The goal was to find proteins that might be used as markers for monitoring cancer development as well as for predicting regional lymph node metastasis and disease outcome. Using mass spectrometry for protein identification and validating the results by immunohistochemistry on an independent validation set, we could identify two of 60 differentially expressed m/z species between Barrett's adenocarcinoma and the precursor lesion: COX7A2 and S100-A10. Furthermore, among 22 m/z species that are differentially expressed in Barrett's adenocarcinoma cases with and without regional lymph node metastasis, one was identified as TAGLN2. In the validation set, we found a correlation of the expression levels of COX7A2 and TAGLN2 with a poor prognosis while S100-A10 was confirmed by multivariate analysis as a novel independent prognostic factor in Barrett's adenocarcinoma. Our results underscore the high potential of MALDI imaging for revealing new biologically significant molecular details from cancer tissues which might have potential for clinical application. This article is part of a Special Issue entitled: Translational Proteomics.
Resumo:
Human papilloma virus (HPV) infection of the uterine cervix is linked to the pathogenesis of cervical cancer. Preclinical in vitro and in vivo studies using HPV-containing human cervical carcinoma cell lines have shown that the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, and epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, erlotinib, can induce growth delay of xenografts. Activation of Akt and mTOR are also observed in cervical squamous cell carcinoma and, the expression of phosphorylated mTOR was reported to serve as a marker to predict response to chemotherapy and survival of cervical cancer patients. Therefore, we investigated: a) the expression level of EGFR in cervical squamous cell carcinoma (SCC) and high-grade squamous intraepithelial lesions (HSIL) versus non-neoplastic cervical squamous epithelium; b) the state of activation of the mTOR pathway in these same tissues; and c) any impact of these signal transduction molecules on cell cycle. Formalin-fixed paraffin-embedded tissue microarray blocks containing 20 samples each of normal cervix, HSIL and invasive SCC, derived from a total of 60 cases of cervical biopsies and cervical conizations were examined. Immunohistochemistry was utilized to detect the following antigens: EGFR; mTOR pathway markers, phosphorylated (p)-mTOR (Ser2448) and p-p70S6K (Thr389); and cell cycle associated proteins, Ki-67 and S phase kinase-associated protein (Skp)2. Protein compartmentalization and expression were quantified in regard to proportion (0-100%) and intensity (0-3+). Mitotic index (MI) was also assessed. An expression index (EI) for pmTOR, p-p70S6K and EGFR, respectively was calculated by taking the product of intensity score and proportion of positively staining cells. We found that plasmalemmal EGFR expression was limited to the basal/parabasal cells (2-3+, EI = 67) in normal cervical epithelium (NL), but was diffusely positive in all HSIL (EI = 237) and SCC (EI 226). The pattern of cytoplasmic p-mTOR and nuclear p-p70S6K expression was similar to that of EGFR; all showed a significantly increased EI in HSIL/SCC versus NL (p<0.02). Nuclear translocation of p-mTOR was observed in all SCC lesions (EI = 202) and was significantly increased versus both HSIL (EI = 89) and NL (EI = 54) with p<0.015 and p<0.0001, respectively. Concomitant increases in MI and proportion of nuclear Ki-67 and Skp2 expression were noted in HSIL and SCC. In conclusion, morphoproteomic analysis reveals constitutive activation and overexpression of the mTOR pathway in HSIL and SCC as evidenced by: increased nuclear translocation of pmTOR and p-p70S6K, phosphorylated at putative sites of activation, Ser2448 and Thr389, respectively; correlative overexpression of the upstream signal transducer, EGFR, and increases in cell cycle correlates, Skp2 and mitotic indices. These results suggest that the mTOR pathway plays a key role in cervical carcinogenesis and targeted therapies may be developed for SCC as well as its precursor lesion, HSIL.
Resumo:
Columnar cell lesions (CCLs) of the breast are a spectrum of lesions that have posed difficulties to pathologists for many years, prompting discussion concerning their biologic and clinical significance. We present a study of CCL in context with hyperplasia of usual type (HUT) and the more advanced lesions ductal carcinoma in situ (DCIS) and invasive ductal carcinoma. A total of 81 lesions from 18 patients were subjected to a comprehensive morphologic review based upon a modified version of Schnitt's classification system for CCL, immunophenotypic analysis (estrogen receptor [ER], progesterone receptor [PgR], Her2/neu, cytokeratin 5/6 [CK5/6], cytokeratin 14 [CK14], E-cadherin, p53) and for the first time, a whole genome molecular analysis by comparative genomic hybridization. Multiple CCLs from 3 patients were studied in particular detail, with topographic information and/or showing a morphologic spectrum of CCL within individual terminal duct lobular units. CCLs were ER an PgR positive, CK5/6 and CK14 negative, exhibit low numbers of genetic alterations and recurrent 16q loss, features that are similar to those of low grade in situ and invasive carcinoma. The molecular genetic profiles closely reflect the degree of proliferation and atypia in CCL, indicating some of these lesions represent both a morphologic and molecular continuum. In addition, overlapping chromosomal alterations between CCL and more advanced lesions within individual terminal duct lobular units suggest a commonality in molecular evolution. These data further support the hypothesis that CCLs are a nonobligate, intermediary step in the development of some forms of low grade in situ and invasive carcinoma. Copyright: © 2005 Lippincott Williams & Wilkins, Inc.
Resumo:
Purpose: Despite significant progress in understanding the molecular pathology of pancreatic cancer and its precursor lesion: pancreatic intraepithelial neoplasia (PanIN), there remain no molecules with proven clinical utility as prognostic or therapeutic markers. Here, we used oligonucleotide microarrays to interrogate mRNA expression of pancreatic cancer tissue and normal pancreas to identify novel molecular pathways dysregulated in the development and progression of pancreatic cancer. Experimental Design: RNA was hybridized to Affymetrix Genechip HG-U133 oligonucleotide microarrays. A relational database integrating data from publicly available resources was created to identify candidate genes potentially relevant to pancreatic cancer. The protein expression of one candidate, homeobox B2 (HOXB2), in PanIN and pancreatic cancer was assessed using immunohistochemistry. Results: We identified aberrant expression of several components of the retinoic acid (RA) signaling pathway (RARa, MUC4, Id-1, MMP9, uPAR, HB-EGF, HOXB6, and HOXB2), many of which are known to be aberrantly expressed in pancreatic cancer and Pan IN. HOXB2, a downstream target of RA, was up-regulated 6.7-fold in pancreatic cancer compared with normal pancreas. Immunohistochemistry revealed ectopic expression of HOXB2 in 15% of early Pan IN lesions and 48 of 128 (38%) pancreatic cancer specimens. Expression of HOXB2 was associated with nonresectable tumors and was an independent predictor of poor survival in resected tumors. Conclusions: We identified aberrant expression of RA signaling components in pancreatic cancer, including HOXB2, which was expressed in a proportion of PanIN lesions. Ectopic expression of HOXB2 was associated with a poor prognosis for all patients with pancreatic cancer and was an independent predictor of survival in patients who underwent resection.
Resumo:
The analysis of clinical breast samples using biomarkers is integral to current breast cancer management. Currently, a limited number of targeted therapies are standard of care in breast cancer treatment. However, these targeted therapies are only suitable for a subset of patients and resistance may occur. Strategies to prevent the occurrence of invasive lesions are required to reduce the morbidity and mortality associated with the development of cancer. In theory, application of targeted therapies to pre-invasive lesions will prevent their progression to invasive lesions with full malignant potential. The diagnostic challenge for pathologists is to make interpretative decisions on early detected pre-invasive lesions. Overall, only a small proportion of these pre-invasive lesions will progress to invasive carcinoma and morphological assessment is an imprecise and subjective means to differentiate histologically identical lesions with varying malignant potential. Therefore differential biomarker analysis in pre-invasive lesions may prevent overtreatment with surgery and provide a predictive indicator of response to therapy. There follows a review of established and emerging potential druggable targets in pre-invasive lesions and correlation with lesion morphology.
Resumo:
Extreme sports have unfortunately gained a reputation for being risk focused and adrenaline fuelled. This perspective has obscured the place of the natural world, making extreme athletes appear to seek to conquer, compete against or defeat natural forces. In contrast, this paper explores findings from a larger hermeneutic phenomenological study that suggests extreme sports can initiate a positive change in participants’ relationships with the natural world. Data sources include first-hand accounts of extreme sports participants such as biographies, videos, papers and journals as well as interviews with ten male and five female extreme sports participants. Reports indicate that extreme sport participants develop feelings of connection to the natural world and describe themselves as being at one with the natural world or connected through a life enhancing energy. The paper draws on theoretical perspectives in ecopsychology which suggest that feeling connected to nature leads to a desire to care for the natural world and contributes to more environmentally sustainable practices.
Resumo:
The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.
Resumo:
A systematic study of four parameters within the alkaline hydrothermal treatment of three commercial titania powders—anatase, rutile, and Degussa P25—was made. These powders were treated with 5, 7.5, 9, and 10 M NaOH between 100 and 220 °C for 20 h. The effects of alkaline concentration, hydrothermal temperature, and precursor phase and crystallite size on the resultant nanostructure formation have been studied through X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and nitrogen adsorption. Through the correlation of these data, morphological phase diagrams were constructed for each commercial powder. Interpretation of the resultant morphological phase diagrams indicates that alkaline concentration and hydrothermal temperature affect nanostructure formation independently, where nanoribbon formation is significantly influenced by temperature for initial formation. The phase and crystallite size of the precursor also significantly influenced nanostructure formation, with rutile displaying a slower rate of precursor consumption compared with anatase. Small crystallite titania precursors formed nanostructures at reduced hydrothermal temperatures.