996 resultados para Precise learning
Resumo:
The exponential growth of the subjective information in the framework of the Web 2.0 has led to the need to create Natural Language Processing tools able to analyse and process such data for multiple practical applications. They require training on specifically annotated corpora, whose level of detail must be fine enough to capture the phenomena involved. This paper presents EmotiBlog – a fine-grained annotation scheme for subjectivity. We show the manner in which it is built and demonstrate the benefits it brings to the systems using it for training, through the experiments we carried out on opinion mining and emotion detection. We employ corpora of different textual genres –a set of annotated reported speech extracted from news articles, the set of news titles annotated with polarity and emotion from the SemEval 2007 (Task 14) and ISEAR, a corpus of real-life self-expressed emotion. We also show how the model built from the EmotiBlog annotations can be enhanced with external resources. The results demonstrate that EmotiBlog, through its structure and annotation paradigm, offers high quality training data for systems dealing both with opinion mining, as well as emotion detection.
Resumo:
Usually, vehicle applications require the use of artificial intelligent techniques to implement control methods, due to noise provided by sensors or the impossibility of full knowledge about dynamics of the vehicle (engine state, wheel pressure or occupiers weight). This work presents a method to on-line evolve a fuzzy controller for commanding vehicles? pedals at low speeds; in this scenario, the slightest alteration in the vehicle or road conditions can vary controller?s behavior in a non predictable way. The proposal adapts singletons positions in real time, and trapezoids used to codify the input variables are modified according with historical data. Experimentation in both simulated and real vehicles are provided to show how fast and precise the method is, even compared with a human driver or using different vehicles.
Resumo:
This special issue represents a further exploration of some issues raised at a symposium entitled “Functional magnetic resonance imaging: From methods to madness” presented during the 15th annual Theoretical and Experimental Neuropsychology (TENNET XV) meeting in Montreal, Canada in June, 2004. The special issue’s theme is methods and learning in functional magnetic resonance imaging (fMRI), and it comprises 6 articles (3 reviews and 3 empirical studies). The first (Amaro and Barker) provides a beginners guide to fMRI and the BOLD effect (perhaps an alternative title might have been “fMRI for dummies”). While fMRI is now commonplace, there are still researchers who have yet to employ it as an experimental method and need some basic questions answered before they venture into new territory. This article should serve them well. A key issue of interest at the symposium was how fMRI could be used to elucidate cerebral mechanisms responsible for new learning. The next 4 articles address this directly, with the first (Little and Thulborn) an overview of data from fMRI studies of category-learning, and the second from the same laboratory (Little, Shin, Siscol, and Thulborn) an empirical investigation of changes in brain activity occurring across different stages of learning. While a role for medial temporal lobe (MTL) structures in episodic memory encoding has been acknowledged for some time, the different experimental tasks and stimuli employed across neuroimaging studies have not surprisingly produced conflicting data in terms of the precise subregion(s) involved. The next paper (Parsons, Haut, Lemieux, Moran, and Leach) addresses this by examining effects of stimulus modality during verbal memory encoding. Typically, BOLD fMRI studies of learning are conducted over short time scales, however, the fourth paper in this series (Olson, Rao, Moore, Wang, Detre, and Aguirre) describes an empirical investigation of learning occurring over a longer than usual period, achieving this by employing a relatively novel technique called perfusion fMRI. This technique shows considerable promise for future studies. The final article in this special issue (de Zubicaray) represents a departure from the more familiar cognitive neuroscience applications of fMRI, instead describing how neuroimaging studies might be conducted to both inform and constrain information processing models of cognition.
Resumo:
High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.
Resumo:
We report experiments designed to test between Nash equilibria that are stable and unstable under learning. The “TASP” (Time Average of the Shapley Polygon) gives a precise prediction about what happens when there is divergence from equilibrium under fictitious play like learning processes. We use two 4 x 4 games each with a unique mixed Nash equilibrium; one is stable and one is unstable under learning. Both games are versions of Rock-Paper-Scissors with the addition of a fourth strategy, Dumb. Nash equilibrium places a weight of 1/2 on Dumb in both games, but the TASP places no weight on Dumb when the equilibrium is unstable. We also vary the level of monetary payoffs with higher payoffs predicted to increase instability. We find that the high payoff unstable treatment differs from the others. Frequency of Dumb is lower and play is further from Nash than in the other treatments. That is, we find support for the comparative statics prediction of learning theory, although the frequency of Dumb is substantially greater than zero in the unstable treatments.
Resumo:
We study a general static noisy rational expectations model where investors have private information about asset payoffs, with common and private components, and about their own exposure to an aggregate risk factor, and derive conditions for existence and uniqueness (or multiplicity) of equilibria. We find that a main driver of the characterization of equilibria is whether the actions of investors are strategic substitutes or complements. This latter property in turn is driven by the strength of a private learning channel from prices, arising from the multidimensional sources of asymmetric information, in relation to the usual public learning channel. When the private learning channel is strong (weak) in relation to the public we have strong (weak) strategic complementarity in actions and potentially multiple (unique) equilibria. The results enable a precise characterization of whether information acquisition decisions are strategic substitutes or complements. We find that the strategic substitutability in information acquisition result obtained in Grossman and Stiglitz (1980) is robust. JEL Classification: D82, D83, G14 Keywords: Rational expectations equilibrium, asymmetric information, risk exposure, hedging, supply information, information acquisition.
Resumo:
The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.
Resumo:
Recent experiments have established that information can be encoded in the spike times of neurons relative to the phase of a background oscillation in the local field potential—a phenomenon referred to as “phase-of-firing coding” (PoFC). These firing phase preferences could result from combining an oscillation in the input current with a stimulus-dependent static component that would produce the variations in preferred phase, but it remains unclear whether these phases are an epiphenomenon or really affect neuronal interactions—only then could they have a functional role. Here we show that PoFC has a major impact on downstream learning and decoding with the now well established spike timing-dependent plasticity (STDP). To be precise, we demonstrate with simulations how a single neuron equipped with STDP robustly detects a pattern of input currents automatically encoded in the phases of a subset of its afferents, and repeating at random intervals. Remarkably, learning is possible even when only a small fraction of the afferents (~10%) exhibits PoFC. The ability of STDP to detect repeating patterns had been noted before in continuous activity, but it turns out that oscillations greatly facilitate learning. A benchmark with more conventional rate-based codes demonstrates the superiority of oscillations and PoFC for both STDP-based learning and the speed of decoding: the oscillation partially formats the input spike times, so that they mainly depend on the current input currents, and can be efficiently learned by STDP and then recognized in just one oscillation cycle. This suggests a major functional role for oscillatory brain activity that has been widely reported experimentally.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
There is considerable interest in the potential of a group of dietary-derived phytochemicals known as flavonoids in modulating neuronal function and thereby influencing memory, learning and cognitive function. The present review begins by detailing the molecular events that underlie the acquisition and consolidation of new memories in the brain in order to provide a critical background to understanding the impact of flavonoid-rich diets or pure flavonoids on memory. Data suggests that despite limited brain bioavailability, dietary supplementation with flavonoid-rich foods, such as blueberry, green tea and Ginkgo biloba lead to significant reversals of age-related deficits on spatial memory and learning. Furthermore, animal and cellular studies suggest that the mechanisms underpinning their ability to induce improvements in memory are linked to the potential of absorbed flavonoids and their metabolites to interact with and modulate critical signalling pathways, transcription factors and gene and/or protein expression which control memory and learning processes in the hippocampus; the brain structure where spatial learning occurs. Overall, current evidence suggests that human translation of these animal investigations are warranted, as are further studies, to better understand the precise cause-and-effect relationship between flavonoid intake and cognitive outputs.
Resumo:
[EN]In the new design of educational programs in European Higher Education Area (EHEA), what defines a subject it is Learning Outcomes (LO). These LO, as explicit and precise declarations, turn into the center of teaching and learning process. Keeping this change is mind, our research examines the Educational Guides (EG) of Spanish Language (SL) through a list of verbs, according to the graduation of educacionational objectives of Bllom's Taxonomy (2014-2015)
Resumo:
The discovery of binary dendritic events such as local NMDA spikes in dendritic subbranches led to the suggestion that dendritic trees could be computationally equivalent to a 2-layer network of point neurons, with a single output unit represented by the soma, and input units represented by the dendritic branches. Although this interpretation endows a neuron with a high computational power, it is functionally not clear why nature would have preferred the dendritic solution with a single but complex neuron, as opposed to the network solution with many but simple units. We show that the dendritic solution has a distinguished advantage over the network solution when considering different learning tasks. Its key property is that the dendritic branches receive an immediate feedback from the somatic output spike, while in the corresponding network architecture the feedback would require additional backpropagating connections to the input units. Assuming a reinforcement learning scenario we formally derive a learning rule for the synaptic contacts on the individual dendritic trees which depends on the presynaptic activity, the local NMDA spikes, the somatic action potential, and a delayed reinforcement signal. We test the model for two scenarios: the learning of binary classifications and of precise spike timings. We show that the immediate feedback represented by the backpropagating action potential supplies the individual dendritic branches with enough information to efficiently adapt their synapses and to speed up the learning process.
Resumo:
The discovery of binary dendritic events such as local NMDA spikes in dendritic subbranches led to the suggestion that dendritic trees could be computationally equivalent to a 2-layer network of point neurons, with a single output unit represented by the soma, and input units represented by the dendritic branches. Although this interpretation endows a neuron with a high computational power, it is functionally not clear why nature would have preferred the dendritic solution with a single but complex neuron, as opposed to the network solution with many but simple units. We show that the dendritic solution has a distinguished advantage over the network solution when considering different learning tasks. Its key property is that the dendritic branches receive an immediate feedback from the somatic output spike, while in the corresponding network architecture the feedback would require additional backpropagating connections to the input units. Assuming a reinforcement learning scenario we formally derive a learning rule for the synaptic contacts on the individual dendritic trees which depends on the presynaptic activity, the local NMDA spikes, the somatic action potential, and a delayed reinforcement signal. We test the model for two scenarios: the learning of binary classifications and of precise spike timings. We show that the immediate feedback represented by the backpropagating action potential supplies the individual dendritic branches with enough information to efficiently adapt their synapses and to speed up the learning process.
Resumo:
Spike timing dependent plasticity (STDP) is a phenomenon in which the precise timing of spikes affects the sign and magnitude of changes in synaptic strength. STDP is often interpreted as the comprehensive learning rule for a synapse - the "first law" of synaptic plasticity. This interpretation is made explicit in theoretical models in which the total plasticity produced by complex spike patterns results from a superposition of the effects of all spike pairs. Although such models are appealing for their simplicity, they can fail dramatically. For example, the measured single-spike learning rule between hippocampal CA3 and CA1 pyramidal neurons does not predict the existence of long-term potentiation one of the best-known forms of synaptic plasticity. Layers of complexity have been added to the basic STDP model to repair predictive failures, but they have been outstripped by experimental data. We propose an alternate first law: neural activity triggers changes in key biochemical intermediates, which act as a more direct trigger of plasticity mechanisms. One particularly successful model uses intracellular calcium as the intermediate and can account for many observed properties of bidirectional plasticity. In this formulation, STDP is not itself the basis for explaining other forms of plasticity, but is instead a consequence of changes in the biochemical intermediate, calcium. Eventually a mechanism-based framework for learning rules should include other messengers, discrete change at individual synapses, spread of plasticity among neighboring synapses, and priming of hidden processes that change a synapse's susceptibility to future change. Mechanism-based models provide a rich framework for the computational representation of synaptic plasticity.
Resumo:
Dopaminergic signals play a mathematically precise role in reward-related learning, and variations in dopaminergic signaling have been implicated in vulnerability to addiction. Here, we provide a detailed overview of the relationship between theoretical, mathematical, and experimental accounts of phasic dopamine signaling, with implications for the role of learning-related dopamine signaling in addiction and related disorders. We describe the theoretical and behavioral characteristics of model-free learning based on errors in the prediction of reward, including step-by-step explanations of the underlying equations. We then use recent insights from an animal model that highlights individual variation in learning during a Pavlovian conditioning paradigm to describe overlapping aspects of incentive salience attribution and model-free learning. We argue that this provides a computationally coherent account of some features of addiction.