995 resultados para Pre-compression


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis aims at studying the structural behaviour of high bond strength masonry shear walls by developing a combined interface and surface contact model. The results are further verified by a cost-effective structural level model which was then extensively used for predicting all possible failure modes of high bond strength masonry shear walls. It is concluded that the increase in bond strength of masonry modifies the failure mode from diagonal cracking to base sliding and doesn't proportionally increase the in-plane shear capacity. This can be overcome by increasing pre-compression pressure which causes failure through blocks. A design equation is proposed and high bond strength masonry is recommended for taller buildings and/ or pre-stressed masonry applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with a finite element modelling method for thin layer mortared masonry systems. In this method, the mortar layers including the interfaces are represented using a zero thickness interface element and the masonry units are modelled using an elasto-plastic, damaging solid element. The interface element is formulated using two regimes; i) shear-tension and ii) shearcompression. In the shear-tension regime, the failure of joint is consiedered through an eliptical failure criteria and in shear-compression it is considered through Mohr Coulomb type failure criterion. An explicit integration scheme is used in an implicit finite element framework for the formulation of the interface element. The model is calibrated with an experimental dataset from thin layer mortared masonry prism subjected to uniaxial compression, a triplet subjected to shear loads a beam subjected to flexural loads and used to predict the response of thin layer mortared masonry wallettes under orthotropic loading. The model is found to simulate the behaviour of a thin layer mortated masonry shear wall tested under pre-compression and inplane shear quite adequately. The model is shown to reproduce the failure of masonry panels under uniform biaxial state of stresses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Partially grouted masonry walls subjected to in-plane shear exhibit a complex behaviour because of the influence of the aspect ratio, the pre-compression, the grouting pattern, the ratios of the horizontal and the vertical reinforcements, the boundary conditions and the characteristics of the constituent materials. The existing in-plane shear expressions for the partially grouted masonry are formulated as sum of strength of three parameters, namely, the masonry, the reinforcement and the axial force. The parameter ‘masonry’ includes the wall aspect ratio and the masonry compressive strength; the aspect ratio of the unreinforced panel inscribed into the grouted cores and bond beams are not considered, although failure is often dominated by these unreinforced masonry panels. This paper describes the dominance of these panels, particularly those that are squat, to the shear capacity of whole of shear walls. Further, the current design formulae are shown highly un-conservative by many researchers; this paper provides a potential reason for this un-conservativeness. It is shown that by including an additional term of the unreinforced panel aspect ratio a rational design formula could be established. This new expression is validated with independent test results reported in the literature – both Australian and overseas; the predictions are shown to be conservative.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An explicit finite element modelling method is formulated using a layered shell element to examine the behaviour of masonry walls subject to out-of-plane loading. Masonry is modelled as a homogenised material with distinct directional properties that are calibrated from datasets of a “C” shaped wall tested under pressure loading applied to its web. The predictions of the layered shell model have been validated using several out-of-plane experimental datasets reported in the literature. Profound influence of support conditions, aspect ratio, pre-compression and opening to the strength and ductility of masonry walls is exhibited from the sensitivity analyses performed using the model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of past mechanical history on the subsequent thermal decomposition kinetics of sodium, potassium, rubidium and caesium perchlorates, has been investigated. At low temperatures the decomposition of all these salts is significantly sensitized by pre-compression. At high temperatures, however, prior compression results in a lowered decomposition rate in the case of potassium, rubidium and caesium perchlorates and in an increase in the thermal reactivity of sodium perchlorate. The high temperature behaviour is shown to be an indirect consequence of the low temperature behaviour. The difference in behaviour between sodium perchlorate and the other alkali metal perchlorates is explained on the basis of the stability of the respective chlorates, formed during the low temperature decomposition. This is substantiated by experiments which show that the addition of sodium chlorate to sodium perchlorate brings about a sensitization while potassium perchlorate admixed with potassium chlorate results in a desensitization at high temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Present paper is the first one in the series devoted to the dynamics of traveling waves emerging in the uncompressed, tri-atomic granular crystals. This work is primarily concerned with the dynamics of one-dimensional periodic granular trimer (tri-atomic) chains in the state of acoustic vacuum. Each unit cell consists of three spherical particles of different masses subject to periodic boundary conditions. Hertzian interaction law governs the mutual interaction of these particles. Under the assumption of zero pre-compression, this interaction is modeled as purely nonlinear, which means the absence of linear force component. The dynamics of such chains is governed by the two system parameters that scale the mass ratios between the particles of the unit cell. Such a system supports two different classes of periodic solutions namely the traveling and standing waves. The primary objective of the present study is the numerical analysis of the bifurcation structure of these solutions with emphasis on the dynamics of traveling waves. In fact, understanding of the bifurcation structure of the traveling wave solutions emerging in the unit-cell granular trimer is rather important and can shed light on the more complex nonlinear wave phenomena emerging in semi-infinite trimer chains. (c) 2016 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel method of measuring cylinder gas temperature in an internal combustion engine cylinder is introduced. The physical basis for the technique is that the flow rate through an orifice is a function of the temperature of the gas flowing through the orifice. Using a pressure transducer in the cylinder, and another in a chamber connected to the cylinder via an orifice, it is shown how the cylinder temperature can be determined with useful sensitivity. In this paper the governing equations are derived, which show that the heat transfer characteristics of the chamber are critical to the performance of the system, and that isothermal or adiabatic conditions give the optimum performance. For a typical internal combustion engine, it is found that the pre-compression cylinder temperature is related to the chamber pressure late in the compression process with sensitivity of the order of 0.005 bar/K. Copyright © 2010 SAE International.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Entre los requisitos que deben cumplir las estructuras se debe garantizar que estas posean la durabilidad necesaria para permanecer en servicio a lo largo de todo el periodo de vida útil para el que han sido proyectadas. Para conseguir este objetivo las normativas han ido incorporando prescripciones para el diseño del hormigón, en base a distintas clases de exposición dependiendo del origen y magnitud de la agresividad exterior. En ambientes con una elevada agresividad, una de las comprobaciones que debe cumplir el hormigón es que tenga una permeabilidad inferior a los valores máximos fijados según la clase de exposición, y que en caso de considerar como ensayo de referencia el de penetración de agua, analiza el frente de penetración limitando las profundidades de penetración media y máxima. Adicionalmente a las condiciones de diseño según el tipo de ambiente, principalmente basadas en la dosificación del hormigón en términos de la relación agua/cemento y el mínimo contenido de cemento y el recubrimiento de las armaduras, durante la vida en servicio las estructuras pueden están solicitadas por distintas acciones imprevistas que pueden provocar cambios en la microestructura interna del hormigón que modifican su permeabilidad y resistencia, y por tanto pueden alterar la durabilidad inicialmente prevista. Es conocido el efecto de cansancio del hormigón cuando está solicitado por cargas de compresión mantenidas en el tiempo, provocando bajas en su resistencia debido al incremento de la microfisuración. Dada la relación entre la permeabilidad y la microfisuración del hormigón, es previsible el aumento de la permeabilidad en hormigones que han sido precomprimidos durante un periodo largo de tiempo. Los estudios de la permeabilidad en hormigones previamente comprimidos se han realizado analizando periodos de tiempo de compresión cortos que no permiten evaluar el efecto del cansancio sobre la permeabilidad. La presente tesis doctoral investiga la permeabilidad y resistencia a tracción en hormigones que previamente han sido comprimidos en carga mantenida durante distintos plazos de tiempo, al objeto de conocer su evolución en base al tiempo de precompresión. La investigación se apoya en el estudio de otras dos variables como son el tipo de hormigón de acuerdo a su dosificación según el tipo de ambiente considerando una agresividad baja, media o alta, y el grado de compresión aplicado respecto de su carga última de rotura. En los resultados del plan experimental desarrollado se ha obtenido que la permeabilidad presenta un incremento significante con el tiempo de precompresión, que dependiendo del valor inicial de la permeabilidad que tiene el hormigón puede provocar que hormigones que previamente satisfacen las limitaciones de permeabilidad pasen a incumplirlas, pudiendo afectar a su durabilidad. También se confirma la influencia del tiempo de precompresión sobre la resistencia a tracción obteniendo bajas de resistencia importantes en los casos pésimos ensayados, que deben ser tenidas en consideración en tanto afectan a la capacidad resistente del hormigón como a otros aspectos fundamentales como el anclaje de las armaduras en el hormigón armado y pretensado. One of the requirements that structures must meet is to guarantee their durability to remain in service throughout all the working life period for which they have been designed. To achieve this goal, building standards and codes have included specifications for the design of concrete structures, based on different exposure classes depending on the environmental conditions and their origin and magnitude. In severe aggressive environments, one of the specifications the concrete must meet is to have a permeability lower than the maximum values set for a certain exposure class. If this parameter is referenced to water penetration on specimens, then the average and maximum depths of front penetration are analyzed. In addition to the design conditions depending on the exposure class, which regulate the dosage of concrete in terms of the water/cement ratio, minimum samples that have been pre-compressed for a long period of time. Previous studies on permeability have been carried on pre-compressed concrete elements analyzing short periods of time. However, they have not studied the effects of compression forces on concrete in the long term. This Thesis investigates permeability and tensile strength of concrete samples that have been previously compressed under loads applied for different periods of time. The goal is to understand its evolution based on the time exposed to compression. The research variables also include the type of concrete according to the dosage used - depending on the environmental exposure it will have low, medium or high aggressiveness-, and the amount of compression applied in relation to its failure load. Results of the experimental tests showed that permeability increases significantly over the time of pre-compression. Depending on the initial value of permeability, this change could make the concrete not meet the original permeability restrictions and therefore affect its durability. These investigations also confirmed the influence of time of pre-compression in tensile strength, where some cases showed a significant decrease of resistance. These issues must be taken into consideration as they affect the bearing capacity of the material and other key features such as the anchoring of steel bars in reinforced and pre-stressed concrete. amount of cement content and the minimum concrete cover of the steel bars, during their working life structures may be subject to various unforeseen actions. As a result, the concrete’s internal microstructure might be affected, changing its permeability and resistance, and possibly altering the original specified durability. It is a known fact that when concrete is loaded in compression maintained over a long time, its resistance to compression forces is diminished due to the increase in micro-cracking. Considering the relationship between permeability and microcracking of concrete, an increase in permeability may be expected in concrete

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El vidrio se trata de un material muy apreciado en la arquitectura debido a la transparencia, característica que pocos materiales tienen. Pero, también es un material frágil, con una rotura inmediata cuando alcanza su límite elástico, sin disponer de un período plástico, que advierta de su futura rotura y permita un margen de seguridad. Por ambas razones, el vidrio se ha utilizado en arquitectura como elemento de plementería o relleno, desde tiempos antiguos, pero no como elemento estructural o portante, pese a que es un material interesante para los arquitectos para ese uso, por su característica de transparencia, ya que conseguiría la desmaterialización visual de la estructura, logrando espacios más ligeros y livianos. En cambio, si se tienen en cuenta las propiedades mecánicas del material se puede comprobar que dispone de unas características apropiadas para su uso estructural, ya que su Módulo elástico es similar al del aluminio, elemento muy utilizado en la arquitectura principalmente en las fachadas desde los últimos años, y su resistencia a compresión es muy superior incluso al hormigón armado; aunque su principal problema es su resistencia a tracción que es muy inferior a su resistencia a compresión, lo que penaliza su resistencia a flexión. En la actualidad se empieza a utilizar el vidrio como elemento portante o estructural, pero debido a su peor resistencia a flexión, se utilizan con grandes dimensiones que, a pesar de su transparencia, tienen una gran presencia. Por ello, la presente investigación pretende conseguir una reducción de las secciones de estos elementos estructurales de vidrio. Entonces, para el desarrollo de la investigación es necesario responder a una serie de preguntas fundamentales, cuyas respuestas serán el cuerpo de la investigación: 1. ¿Cuál es la finalidad de la investigación? El objetivo de esta investigación es la optimización de elementos estructurales de vidrio para su utilización en arquitectura. 2. ¿Cómo se va a realizar esa optimización? ¿Qué sistemas se van a utilizar? El sistema para realizar la optimización será la pretensión de los elementos estructurales de vidrio 3. ¿Por qué se va a utilizar la precompresión? Porque el vidrio tiene un buen comportamiento a compresión y un mal comportamiento a tracción lo que penaliza su utilización a flexión. Por medio de la precompresión se puede incrementar esta resistencia a tracción, ya que los primeros esfuerzos reducirán la compresión inicial hasta comenzar a funcionar a tracción, y por tanto aumentará su capacidad de carga. 4. ¿Con qué medios se va a comprobar y justificar ese comportamiento? Mediante simulaciones informáticas con programas de elementos finitos. 5. ¿Por qué se utilizará este método? Porque es una herramienta que arroja ventajas sobre otros métodos como los experimentales, debido a su fiabilidad, economía, rapidez y facilidad para establecer distintos casos. 6. ¿Cómo se garantiza su fiabilidad? Mediante el contraste de resultados obtenidos con ensayos físicos realizados, garantizando de ésta manera el buen comportamiento de los programas utilizados. El presente estudio tratará de responder a todas estas preguntas, para concluir y conseguir elementos estructurales de vidrio con secciones más reducidas gracias a la introducción de la precompresión, todo ello a través de las simulaciones informáticas por medio de elementos finitos. Dentro de estas simulaciones, también se realizarán comprobaciones y comparaciones entre distintas tipologías de programas para comprobar y contrastar los resultados obtenidos, intentando analizar cuál de ellos es el más idóneo para la simulación de elementos estructurales de vidrio. ABSTRACT Glass is a material very appreciated in architecture due to its transparency, feature that just a few materials share. But it is also a brittle material with an immediate breakage when it reaches its elastic limit, without having a plastic period that provides warning of future breakage allowing a safety period. For both reasons, glass has been used in architecture as infill panels, from old times. However, it has never been used as a structural or load‐bearing element, although it is an interesting material for architects for that use: because of its transparency, structural glass makes possible the visual dematerialization of the structure, achieving lighter spaces. However, taking into account the mechanical properties of the material, it is possible to check that it has appropriate conditions for structural use: its elastic modulus is similar to that of aluminium, element widely used in architecture, especially in facades from recent years; and its compressive strength is much higher than even the one of concrete. However, its main problem consists in its tensile strength that is much lower than its compressive strength, penalizing its resistance to bending. Nowadays glass is starting to be used as a bearing or structural element, but due to its worse bending strength, elements with large dimensions must be used, with a large presence despite its transparency. Therefore this research aims to get smaller sections of these structural glass elements. For the development of this thesis, it is necessary to answer a number of fundamental questions. The answers will be the core of this work: 1. What is the purpose of the investigation? The objective of this research is the optimization of structural glass elements for its use in architecture. 2. How are you going to perform this optimization? What systems will be implemented? The system for optimization is the pre‐stress of the structural elements of glass 3. Why are you going to use the pre‐compression? Because glass has a good resistance to compression and a poor tensile behaviour, which penalizes its use in bending elements. Through the pre‐compression it is possible to increase this tensile strength, due to the initial tensile efforts reducing the pre‐stress and increasing its load capacity. 4. What are the means that you will use in order to verify and justify this behaviour? The means are based on computer simulations with finite element programs (FEM) 5. Why do you use this method? Because it is a tool which gives advantages over other methods such as experimental: its reliability, economy, quick and easy to set different cases. 6. How the reliability is guaranteed? It’s guaranteed comparing the results of the simulation with the performed physical tests, ensuring the good performance of the software. This thesis will attempt to answer all these questions, to obtain glass structural elements with smaller sections thanks to the introduction of the pre‐compression, all through computer simulations using finite elements methods. In these simulations, tests and comparisons between different types of programs will also be implemented, in order to test and compare the obtained results, trying to analyse which one is the most suitable for the simulation of structural glass elements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2016-06-17 02:15:25.215

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recently developed novel biomass fuel pellet, the Q’ Pellet, offers significant improvements over conventional white pellets, with characteristics comparable to those of coal. The Q’ Pellet was initially created at bench scale using a proprietary die and punch design, in which the biomass was torrefied in-situ¬ and then compressed. To bring the benefits of the Q’ Pellet to a commercial level, it must be capable of being produced in a continuous process at a competitive cost. A prototype machine was previously constructed in a first effort to assess continuous processing of the Q’ Pellet. The prototype torrefied biomass in a separate, ex-situ reactor and transported it into a rotary compression stage. Upon evaluation, parts of the prototype were found to be unsuccessful and required a redesign of the material transport method as well as the compression mechanism. A process was developed in which material was torrefied ex-situ and extruded in a pre-compression stage. The extruded biomass overcame multiple handling issues that had been experienced with un-densified biomass, facilitating efficient material transport. Biomass was extruded directly into a novel re-designed pelletizing die, which incorporated a removable cap, ejection pin and a die spring to accommodate a repeatable continuous process. Although after several uses the die required manual intervention due to minor design and manufacturing quality limitations, the system clearly demonstrated the capability of producing the Q’ Pellet in a continuous process. Q’ Pellets produced by the pre-compression method and pelletized in the re-designed die had an average dry basis gross calorific value of 22.04 MJ/kg, pellet durability index of 99.86% and dried to 6.2% of its initial mass following 24 hours submerged in water. This compares well with literature results of 21.29 MJ/kg, 100% pellet durability index and <5% mass increase in a water submersion test. These results indicate that the methods developed herein are capable of producing Q’ Pellets in a continuous process with fuel properties competitive with coal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particle emissions, volatility, and the concentration of reactive oxygen species (ROS) were investigated for a pre-Euro I compression ignition engine to study the potential health impacts of employing ethanol fumigation technology. Engine testing was performed in two separate experimental campaigns with most testing performed at intermediate speed with four different load settings and various ethanol substitutions. A scanning mobility particle sizer (SMPS) was used to determine particle size distributions, a volatilization tandem differential mobility analyzer (V-TDMA) was used to explore particle volatility, and a new profluorescent nitroxide probe, BPEAnit, was used to investigate the potential toxicity of particles. The greatest particulate mass reduction was achieved with ethanol fumigation at full load, which contributed to the formation of a nucleation mode. Ethanol fumigation increased the volatility of particles by coating the particles with organic material or by making extra organic material available as an external mixture. In addition, the particle-related ROS concentrations increased with ethanol fumigation and were associated with the formation of a nucleation mode. The smaller particles, the increased volatility, and the increase in potential particle toxicity with ethanol fumigation may provide a substantial barrier for the uptake of fumigation technology using ethanol as a supplementary fuel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: We hypothesize that chondrocytes from distinct zones of articular cartilage respond differently to compressive loading, and that zonal chondrocytes from osteoarthritis (OA) patients can benefit from optimized compressive stimulation. Therefore, we aimed to determine the transcriptional response of superficial (S) and middle/deep (MD) zone chondrocytes to varying dynamic compressive strain and loading duration. To confirm effects of compressive stimulation on overall matrix production, we subjected zonal chondrocytes to compression for 2 weeks. Design: Human S and MD chondrocytes from osteoarthritic joints were encapsulated in 2% alginate, pre-cultured, and subjected to compression with varying dynamic strain (5, 15, 50% at 1 Hz) and loading duration (1, 3, 12 h). Temporal changes in cartilage-specific, zonal, and dedifferentiation genes following compression were evaluated using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). The benefits of long-term compression (50% strain, 3 h/day, for 2 weeks) were assessed by measuring construct glycosaminoglycan (GAG) content and compressive moduli, as well as immunostaining. Results: Compressive stimulation significantly induced aggrecan (ACAN), COL2A1, COL1A1, proteoglycan 4 (PRG4), and COL10A1 gene expression after 2 h of unloading, in a zone-dependent manner (P < 0.05). ACAN and PRG4 mRNA levels depended on strain and load duration, with 50% and 3 h loading resulting in highest levels (P < 0.05). Long-term compression increased collagen type II and ACAN immunostaining and total GAG (P < 0.05), but only S constructs showed more PRG4 stain, retained more GAG (P < 0.01), and developed higher compressive moduli than non-loaded controls. Conclusions: The biosynthetic activity of zonal chondrocytes from osteoarthritis joints can be enhanced with selected compression regimes, indicating the potential for cartilage tissue engineering applications. © 2012 Osteoarthritis Research Society International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis introduced Bayesian statistics as an analysis technique to isolate resonant frequency information in in-cylinder pressure signals taken from internal combustion engines. Applications of these techniques are relevant to engine design (performance and noise), energy conservation (fuel consumption) and alternative fuel evaluation. The use of Bayesian statistics, over traditional techniques, allowed for a more in-depth investigation into previously difficult to isolate engine parameters on a cycle-by-cycle basis. Specifically, these techniques facilitated the determination of the start of pre-mixed and diffusion combustion and for the in-cylinder temperature profile to be resolved on individual consecutive engine cycles. Dr Bodisco further showed the utility of the Bayesian analysis techniques by applying them to in-cylinder pressure signals taken from a compression ignition engine run with fumigated ethanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, an LPG fumigation system was fitted to a Euro III compression ignition (CI) engine to explore its impact on performance, and gaseous and particulate emissions. LPG was introduced to the intake air stream (as a secondary fuel) by using a low pressure fuel injector situated upstream of the turbocharger. LPG substitutions were test mode dependent, but varied in the range of 14-29% by energy. The engine was tested over a 5 point test cycle using ultra low sulphur diesel (ULSD), and a low and high LPG substitution at each test mode. The results show that LPG fumigation coerces the combustion into pre-mixed mode, as increases in the peak combustion pressure (and the rate of pressure rise) were observed in most tests. The emissions results show decreases in nitric oxide (NO) and particulate matter (PM2.5) emissions; however, very significant increases in carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. A more detailed investigation of the particulate emissions showed that the number of particles emitted was reduced with LPG fumigation at all test settings – apart from mode 6 of the ECE R49 test cycle. Furthermore, the particles emitted generally had a slightly larger median diameter with LPG fumigation, and had a smaller semi-volatile fraction relative to ULSD. Overall, the results show that with some modifications, LPG fumigation systems could be used to extend ULSD supplies without adversely impacting on engine performance and emissions.