999 resultados para Ppar Beta


Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractPPARP is a nuclear receptor responding in vivo to several free fatty acids, and implicated in cell metabolism, differentiation and survival. PPARp is ubiquitously expressed but shows high expression in the developing and adult brain. PPARp is expressed in different cell types such as neurons and astrocytes, where it might play a role in metabolism. To study this nuclear receptor the laboratory engineered a PPARP -/- mouse model. The aim of my PhD was to dissect the role of PPARP in astrocytes.Experiments in primary culture revealed that cortical astrocytes from PPARP -/- mouse have an impaired energetic metabolism. Unstimulated PPARP -/- astrocytes exhibit a 30% diminution in glucose uptake, correlating to a 30% decrease in lactate release and intracellular glucose. After acute stimulation by D- aspartate mimicking glutamate exposure, both WT and -/- astrocytes up-regulate their metabolism to respond to the increasing energy needed (ATP) for glutamate uptake. According to the Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), the ratio between glucose uptake/ lactate release is 1. However, stimulated PPARp -/- astrocytes display a higher increase in lactate release than glucose uptake which remains lower than in WT. The extra glucose equivalents could come from the degradation of intra cellular glycogen stores, which indeed decrease in PPARP -/- cells upon stimulation. Lower glucose metabolism correlates with a decreased acute glutamate uptake in PPARP -/- astrocytes. Reciprocally, we also observed an increase of glutamate uptake and ATP production after treatment of WT astrocytes with a PPARp agonist. Glutamate transporter protein expression is not affected. However, their trafficking and localization might be altered as PPARp -/- astrocytes have higher cholesterol levels, which may also affect proper transporter structure in the membrane.Metabolism, transporter localization and cholesterol levels are respectively linked to cell mobility, cell cytoskeleton and cellular membrane composition. All three functions are important in astrocytes to in vivo acquire star shaped morphology, in a process known as stellation. PPARP -/- astrocytes showed an impaired acquired stellation in presence of neurons or chemical stimuli, as well as more actin stress fibers and cell adhesion structures. While non stellation of astrocytes is mainly an in vitro phenomenon, it reveals PPARp -/- primary astrocytes inability to respond to different exterior stimuli. These morphological phenotypes correlate with a slower migration in cell culture wound healing assays.This thesis work demonstrates that PPARp is implicated in cortical astrocyte glucose metabolism. PPARp absence leads to an unusual intracellular glycogen use. Added to the effect on acute glutamate uptake and astrocyte migration, PPARp could be an interesting target for neuroprotection therapies.RésuméPPARP est un récepteur nucléaire qui a pour ligands naturels certains acides gras libres. Il est impliqué dans le métabolisme, la différentiation et la survie des cellules. PPARP est ubiquitaire, et a une expression élevée dans le cerveau en développement ainsi qu'adulte. PPARp est exprimé dans différents types cellulaires tels que les neurones et les astrocytes, où il régule potentiellement leurs métabolismes. Pour étudier ce récepteur nucléaire, le laboratoire a créé un modèle de souris PPARp -/-. L'objectif de ma thèse est de comprendre le rôle de PPARp dans les astrocytes.Les expériences montrent un défaut du métabolisme énergétique dans les astrocytes corticaux primaires tirés de souris PPARp -/-. Sans stimulation, l'entrée du glucose dans les astrocytes PPARP -/- est diminuée de 30% ce qui correspond à une diminution de 30% du relargage du lactate. Après stimulation par du D-Aspartate qui mime une exposition au glutamate, les astrocytes WT et -/- augmentent leur métabolisme en réponse à la demande accrue en énergie (ATP) due à l'entrée du glutamate. D'après l'Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), le ratio entre le glucose entrant et le lactate sortant est de 1. Cependant le relargage du lactate dans les astrocytes PPARP-/- est plus élevé que l'entrée du glucose. L'apport supplémentaire de glucose transformé en lactate pourrait provenir de la dégradation des stocks de glycogène intracellulaire, qui sont partiellement diminués après stimulation dans les cellules PPARP -/-. Un métabolisme plus faible du glucose corrèle avec une réduction de l'import du glutamate dans les astrocytes PPARp -/-. Réciproquement, nous observons une augmentation de l'import du glutamate et de la production d'ATP après traitement avec l'agoniste pour PPARp. Bien que l'expression des transporteurs de glutamate ne soit pas affectée, nous ne pouvons pas exclure que leur localisation et leur structure soient altérées du fait du niveau élevé de cholestérol dans les astrocytes PPARp -/-.Le métabolisme, la localisation des transporteurs et le niveau de cholestérol sont tous liés au cytosquelette, à la mobilité, et à la composition des membranes cellulaires. Toutes ces fonctions sont importantes pour les astrocytes pour acquérir leur morphologie in vivo. Les astrocytes PPARP -/- présentent un défaut de stellation, aussi bien en présence de neurones que de stimuli chimiques, ainsi qu'un plus grand nombre de fibres de stress (actine) et de structures d'adhésion cellulaire. Bien que les astrocytes non stellaires soient principalement observés in vitro, le défaut de stellation des astrocytes primaires PPARp -/- indique une incapacité à répondre aux différents stimuli extérieurs. Ces phénotypes morphologiques corrèlent avec une migration plus lente en cas de lésion de la culture.Ce travail de thèse a permis de démontrer l'implication de PPARP dans le métabolisme du glucose des astrocytes corticaux. L'absence de ce récepteur nucléaire amène à l'utilisation du glucose intracellulaire, auquel s'ajoutent les effets sur l'import du glutamate et la migration des astrocytes. PPARp aurait des effets neuroprotecteurs, et de ce fait pourrait être utilisé à des fins thérapeutiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor (PPAR) dysfunction has been implicated in the manifestation of many diseases and illnesses, ranging from obesity to cancer. Herein, we discuss the role of PPARbeta, one of the three PPAR isotypes, during wound healing. While PPARbeta expression is undetectable in unchallenged and healthy adult interfollicular mouse skin, it is robustly re-activated in stress situations, such as upon phorbol ester treatment, hair plucking and cutaneous wounding. The inflammatory reaction associated with a skin injury activates the keratinocytes at the edges of the wound. This activation involves PPARbeta, whose expression and activity as transcription factor are up-regulated by pro-inflammatory signals. The re-activation of PPARbeta influences three important properties of the activated keratinocytes that are vital for rapid wound closure, namely, survival, migration and differentiation. The anti-apoptotic and, thus, survival role of PPARbeta is mediated by the up-regulation of expression of integrin-linked kinase and 3-phosphoinositide-dependent kinase-1. Both kinases are required for the full activation of the Akt1 survival cascade. Therefore, the up-regulation of PPARbeta, early after injury, appears to be important to maintain a sufficient number of viable keratinocytes at the wound edge. At a later stage of wound repair, the stimulation of keratinocyte migration and differentiation by PPARbeta is also likely to be important for the formation of a new epidermis at the wounded area. Consistent with these observations, the entire wound healing process is delayed in PPARbeta +/- mice and wound closure is retarded by 2-3 days. The multiple roles of PPARbeta in the complex keratinocyte response after injury and during skin repair certainly justify a further exploration of its potential as a target for wound healing drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. METHODS: Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. RESULTS: GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. CONCLUSION: Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-beta agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immediate response to skin injury is the release of inflammatory signals. It is shown here, by use of cultures of primary keratinocytes from wild-type and PPAR beta/delta(-/-) mice, that such signals including TNF-alpha and IFN-gamma, induce keratinocyte differentiation. This cytokine-dependent cell differentiation pathway requires up-regulation of the PPAR beta/delta gene via the stress-associated kinase cascade, which targets an AP-1 site in the PPAR beta/delta promoter. In addition, the pro-inflammatory cytokines also initiate the production of endogenous PPAR beta/delta ligands, which are essential for PPAR beta/delta activation and action. Activated PPAR beta/delta regulates the expression of genes associated with apoptosis resulting in an increased resistance of cultured keratinocytes to cell death. This effect is also observed in vivo during wound healing after an injury, as shown in dorsal skin of PPAR beta/delta(+/+) and PPAR beta/delta(+/-) mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives-Peroxisome proliferator-activated receptor beta/delta (PPAR beta/delta) is a nuclear receptor found in platelets. PPAR beta/delta agonists acutely inhibit platelet function within a few minutes of addition. As platelets are anucleated, the effects of PPAR beta/delta agonists on platelets must be nongenomic. Currently, the particular role of PPAR beta/delta receptors and their intracellular signaling pathways in platelets are not known. Methods and Results-We have used mice lacking PPAR beta/delta (PPAR beta/delta(-/-)) to show the effects of the PPAR beta/delta agonist GW501516 on platelet adhesion and cAMP levels are mediated specifically by PPAR beta/delta, however GW501516 had no PPAR beta/delta-specific effect on platelet aggregation. Studies in human platelets showed that PKC alpha, which can mediate platelet activation, was bound and repressed by PPAR beta/delta after platelets were treated with GW501516. Conclusions-These data provide evidence of a novel mechanism by which PPAR receptors influence platelet activity and thereby thrombotic risk. (Arterioscler Thromb Vasc Biol. 2009; 29: 1871-1873.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the functions of peroxisome proliferator activated receptor (PPAR) beta/delta in skin wound healing and cancer. In particular, we highlight the roles of PPAR beta/delta in inhibiting keratinocyte apoptosis at wound edges via activation of the PI3K/PKB alpha/Akt1 pathway and its role during re-epithelialization in regulating keratinocyte adhesion and migration. In fibroblasts, PPAR beta/delta controls IL-1 signalling and thereby contributes to the homeostatic control of keratinocyte proliferation. We discuss its therapeutic potential for treating diabetic wounds and inflammatory skin diseases such as psoriasis and acne vulgaris. PPAR beta/delta is classified as a tumour growth modifier; it is activated by chronic low-grade inflammation, which promotes the production of lipids that, in turn, enhance PPAR beta/delta transcription activity. Our earlier,work unveiled a cascade of events triggered by PPAR beta/delta that involve the oncogene Src, which promotes ultraviolet-induced skin cancer in mice via enhanced EGFR/Erk1/2 signalling and the expression of epithelial-to-mesenchymal transition (EMT) markers. Interestingly, PPAR beta/delta expression is correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma. Furthermore, there is a positive interaction between PPAR beta/delta, SRC, and TGF beta 1 at the transcriptional level in various human epithelial cancers. Taken together, these observations suggest the need for evaluating PPAR beta/delta modulators that attenuate or increase its activity, depending on the therapeutic target.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that can be activated by various xenobiotics and natural fatty acids. These transcription factors primarily regulate genes involved in lipid metabolism and also play a role in adipocyte differentiation. We present the expression patterns of the PPAR subtypes in the adult rat, determined by in situ hybridization using specific probes for PPAR-alpha, -beta and -gamma, and by immunohistochemistry using a polyclonal antibody that recognizes the three rat PPAR subtypes. In numerous cell types from either ectodermal, mesodermal, or endodermal origin, PPARs are coexpressed, with relative levels varying between them from one cell type to the other. PPAR-alpha is highly expressed in hepatocytes, cardiomyocytes, enterocytes, and the proximal tubule cells of kidney. PPAR-beta is expressed ubiquitously and often at higher levels than PPAR-alpha and -gamma. PPAR-gamma is expressed predominantly in adipose tissue and the immune system. Our results suggest new potential directions to investigate the functions of the different PPAR subtypes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The three peroxisome proliferator-activated receptors (PPAR alpha, PPAR beta, and PPAR gamma) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. They are regarded as being sensors of physiological levels of fatty acids and fatty acid derivatives. In the adult mouse skin, they are found in hair follicle keratinocytes but not in interfollicular epidermis keratinocytes. Skin injury stimulates the expression of PPAR alpha and PPAR beta at the site of the wound. Here, we review the spatiotemporal program that triggers PPAR beta expression immediately after an injury, and then gradually represses it during epithelial repair. The opposing effects of the tumor necrosis factor-alpha and transforming growth factor-beta-1 signalling pathways on the activity of the PPAR beta promoter are the key elements of this regulation. We then compare the involvement of PPAR beta in the skin in response to an injury and during hair morphogenesis, and underscore the similarity of its action on cell survival in both situations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To investigate the role of peroxisome proliferator-activated receptors (PPARs) chi and beta in the differentiation of colon cancer cells, we differentiated HT-29 cells using sodium butyrate (NaB) and culturing post-confluence and assessed differentiation using the marker intestinal alkaline phosphatase. While PPAR chi levels only changed with culturing post confluence, PPAR beta levels increased independent of the method of differentiation. To explore further the differences induced by NaB. we assessed changes in both PPAR isoforms in MCF-7 breast cancer cells cultured in the presence of NaB over 48 h. Again a very different expression pattern was observed with PPAR-1 increasing after 4 h and remaining elevated, while PPAR beta increased transiently. Our studies suggest that the expression of PPARs is dependent upon both the method of differentiation and on time. Moreover, these studies show that changes in levels are not required for the differentiation of colon cancer cell lines, whereas changes in PPAR beta are more closely associated with differentiation. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor beta (PPARbeta) is a member of the nuclear hormone receptor superfamily and is a ligand activated transcription factor. although the precise genes that it regulates and its physiological and pathophysiological role remain unclear. In view of the association of PPARbeta with colon cancer and increased mRNA levels of PPARbeta in colon tumours we sought in this study to examine the expression of PPARbeta in human breast epithelial cells of tumorigenic (MCF-7 and MDA-MB-231) and non-tumorigenic origin (MCF-10A). Using quantitative RT-PCR we measured PPARbeta mRNA levels in MCF-7. MDA-MB-231 and MCF-10A cells at various stages in culture. After serum-deprivation, MDA-MB-231 and MCF-10A cells had a 4.2- and 3.8-fold statistically greater expression of PPARbeta compared with MCF-7 cells. The tumorigenic cell lines also exhibited a significantly greater level of PPARbeta mRNA after serum deprivation compared with subconfluence whereas such an effect was not observed in non-tumorigenic MCF-10A cells. The expression of PPARbeta was inducible upon exposure to the PPARbeta ligand bezafibrate. Our results suggest that unlike colon cancer. PPARbeta overexpression is not an inherent property of breast cancer cell lines. However, the dynamic changes in PPARbeta mRNA expression and the ability of PPARbeta in the MCF-7 cells to respond to ligand indicates that PPARbeta may play a role in mammary gland carcinogenesis through activation of downstream genes via endogenous fatty acid ligands or exogenous agonists. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Advances in wound care are of great importance in clinical injury management. In this respect, the nuclear receptor peroxisome proliferator-activated receptor (PPAR)beta/delta occupies a unique position at the intersection of diverse inflammatory or anti-inflammatory signals that influence wound repair. This study shows how changes in PPARbeta/delta expression have a profound effect on wound healing. Using two different in vivo models based on topical application of recombinant transforming growth factor (TGF)-beta1 and ablation of the Smad3 gene, we show that prolonged expression and activity of PPARbeta/delta accelerate wound closure. The results reveal a dual role of TGF-beta1 as a chemoattractant of inflammatory cells and repressor of inflammation-induced PPARbeta/delta expression. Also, they provide insight into the so far reported paradoxical effects of the application of exogenous TGF-beta1 at wound sites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIM/HYPOTHESIS: Endoplasmic reticulum (ER) stress, which is involved in the link between inflammation and insulin resistance, contributes to the development of type 2 diabetes mellitus. In this study, we assessed whether peroxisome proliferator-activated receptor (PPAR)β/δ prevented ER stress-associated inflammation and insulin resistance in skeletal muscle cells. METHODS: Studies were conducted in mouse C2C12 myotubes, in the human myogenic cell line LHCN-M2 and in skeletal muscle from wild-type and PPARβ/δ-deficient mice and mice exposed to a high-fat diet. RESULTS: The PPARβ/δ agonist GW501516 prevented lipid-induced ER stress in mouse and human myotubes and in skeletal muscle of mice fed a high-fat diet. PPARβ/δ activation also prevented thapsigargin- and tunicamycin-induced ER stress in human and murine skeletal muscle cells. In agreement with this, PPARβ/δ activation prevented ER stress-associated inflammation and insulin resistance, and glucose-intolerant PPARβ/δ-deficient mice showed increased phosphorylated levels of inositol-requiring 1 transmembrane kinase/endonuclease-1α in skeletal muscle. Our findings demonstrate that PPARβ/δ activation prevents ER stress through the activation of AMP-activated protein kinase (AMPK), and the subsequent inhibition of extracellular-signal-regulated kinase (ERK)1/2 due to the inhibitory crosstalk between AMPK and ERK1/2, since overexpression of a dominant negative AMPK construct (K45R) reversed the effects attained by PPARβ/δ activation. CONCLUSIONS/INTERPRETATION: Overall, these findings indicate that PPARβ/δ prevents ER stress, inflammation and insulin resistance in skeletal muscle cells by activating AMPK.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prostacyclin and its mimetics are used therapeutically for the treatment of pulmonary hypertension. These drugs act via cell surface prostacyclin receptors (IP receptors); however, some of them can also activate the nuclear receptor peroxisome proliferator-activated receptor beta (PPARbeta). We examined the possibility that PPARbeta is a therapeutic target for the treatment of pulmonary hypertension. Using the newly approved (for pulmonary hypertension) prostacyclin mimetic treprostinil sodium, reporter gene assays for PPARbeta activation and measurement of lung fibroblast proliferation were analyzed. Treprostinil sodium was found to activate PPARbeta in reporter gene assays and to inhibit proliferation of human lung fibroblasts at concentrations consistent with an effect on PPARs but not on IP receptors. The effects of treprostinil sodium on human lung cell proliferation are mimicked by those of the highly selective PPARbeta ligand GW0742. There are no receptor antagonists for PPARbeta or for IP receptors, but by using lung fibroblasts cultured from mice lacking PPARbeta (PPARbeta-/-) or IP (IP-/-), we demonstrate that the antiproliferative effects of treprostinil sodium are mediated by PPARbeta and not IP in lung fibroblasts. These observations suggest that some of the local, longer-term benefits of treprostinil sodium on reducing the remodeling associated with pulmonary hypertension may be mediated by PPARbeta. This study is the first to identify PPARbeta as a potential therapeutic target for the treatment of pulmonary hypertension, which is important because orally active PPARbeta ligands have been developed for the treatment of dyslipidemia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Healing of cutaneous wounds, which is crucial for survival after an injury, proceeds via a well-tuned pattern of events including inflammation, re-epithelialisation, and matrix and tissue remodelling. These events are regulated spatio-temporally by a variety of growth factors and cytokines. The inflammation that immediately follows injury increases the expression of peroxisome proliferator-activated receptor (PPAR)-beta in the wound edge keratinocytes and triggers the production of endogenous PPARbeta ligands that activate the newly produced receptor. This elevated PPARbeta activity results in increased resistance of the keratinocytes to the apoptotic signals released during wounding, allowing faster re-epithelialisation. The authors speculate that, in parallel, ligand activation of PPARbeta in infiltrated macrophages attenuates the inflammatory response, which also promotes repair. Thus, current understanding of the roles of PPARbeta in different cell types implicated in tissue repair has revealed an intriguing intercellular cross-talk that coordinates, spatially and temporally, inflammation, keratinocyte survival, proliferation and migration, which are all essential for efficient wound repair. These novel insights into the orchestrating roles of PPARbeta during wound healing may be helpful in the development of drugs for acute and chronic wound disorders.