997 resultados para Pozzolanic reaction
Resumo:
This paper presents a study of the pozzolanic reaction kinetics between calcium hydroxide and a mixture of sugar cane bagasse with 20 and 30% of clay, burned at 800 and 1000 degrees C (SCBCA) by electrical conductivity measurements. A kinetic-diffusive model produced in previous studies by some of the authors was used. The model was fitted to the experimental data, which allowed the computation of the kinetic parameters of the pozzolanic reaction (reaction rate constant and free energy of activation) that rigorously characterised the pozzolanic activity of the materials. The results show that SCBCA demonstrated reactivity and good pozzolanic qualities in the range 800-1000 degrees C.
Resumo:
Phosphogypsum is added to building materials to accelerate fly ash pozzolanic reaction and contributes to early strength development of concrete. The release of unacceptable fluoride levels by phoshogypsum on contact with water is a major impediment in its usage to manufacture building products because excess fluoride consumption causes dental and skeletal fluorosis. This paper examines the efficacy of fly ash pozzolanic reactions in controlling fluoride release by phosphogypsum. Fly ash (FA), sand (S), lime (L), and phosphogypsum (G) (FA-S-L-G) slurries are cured for various periods, and the fluoride released by the mix is monitored as a function of time. A substantial reduction in fluoride release was observed and is attributed to entrapment of phosphogypsum particles in a cementious matrix formed by fly ash-lime pozzolanic reactions coupled with consumption of fluoride in formation of insoluble compounds. The compressive strength developed by compacted FA-S-L-G specimens with time was observed to be a three-stage process; maximum strength mobilization occurred during 14 and 28days of curing at room temperature. Exposure of the compacted FA-S-L-G specimens to acidic and alkaline environments for 9 days did not impact their compressive strengths. (C) 2013 American Society of Civil Engineers.
Resumo:
in this paper a study of calcining conditions on the microstructural features of sugar cane waste ash (SCWA) is carried out. For this purpose, some microparticles (< 90 mu m) of sugar cane straw ash and sugar cane bagasse ash of samples calcined at 800 degrees C and 1000 are studied by combining the bright field and the dark field images with the electron diffraction patterns in the transmission electron microscopy (TEM). It is appreciated that the morphology and texture of these microparticles change when silicon or calcium are present. Furthermore, it is observed that iron oxide (magnetite Fe(3)O(4)) is located in the calcium-rich particles. The microstructural information is correlated with the results of a kinetic-diffusive model that allows the computing of the kinetic parameters of the pozzolanic reaction (mainly the reaction rate constant). The results show that the sugar cane wastes ash calcined at 800 and 1000 degrees C have properties indicative of high pozzolanic activity. The X-ray diffraction patterns, the TEM images and the pozzolanic activity tests show the influence of different factors on the activation of these ashes. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The use of fly ash (FA) as an admixture to concrete is broadly extended for two main reasons: the reduction of costs that supposes the substitution of cement and the micro structural changes motivated by the mineral admixture. Regarding this second point, there is a consensus that considers that the ash generates a more compact concrete and a reduction in the size of the pore. However, the measure in which this contributes to the pozzolanic activity or as filler is not well defined. There is also no justification to the influence of the physical parameters, fineness of the grain and free water, in its behavior. This work studies the use of FA as a partial substitute of the cement in concretes of different workability (dry and wet) and the influence in the reactivity of the ash. The concrete of dry consistency which serves as reference uses a cement dose of 250 Kg/m 3 and the concrete of fluid consistency utilized a dose of cement of 350 Kg/m 3 . Two trademark of Portland Cement Type 1 were used. The first reached the resistant class for its fineness of grain and the second one for its composition. Moreover, three doses of FA have been used, and the water/binder ratio was constant in all the mixtures. We have studied the mechanical properties and the micro-structure of the concretes by means of compressive strength tests, mercury intrusion porosimetry (MIP) and thermal analysis (TA). The results of compressive strength tests allow us to observe that concrete mixtures with cements of the same classification and similar dosage of binder do not present the same mechanical behavior. These results show that the effective water/binder ratio has a major role in the development of the mechanical properties of concrete. The study of different dosages using TA, thermo-gravimetry and differential thermal analysis, revealed that the portlandite content is not restrictive in any of the dosages studied. Again, this proves that the rheology of the material influences the reaction rate and content of hydrated cement products. We conclude that the available free water is determinant in the efficiency of pozzolanic reaction. It is so that in accordance to the availability of free water, the ashes can react as an active admixture or simply change the porous distribution. The MIP shows concretes that do not exhibit significant changes in their mechanical behavior, but have suffered significant variation in their porous structure
Resumo:
This study investigated the durability properties of concrete containing nano-silica at dosages of 0.3% and 0.9%, respectively. Due to the nano-filler effect and the pozzolanic reaction, the microstructure became more homogeneous and less porous, especially at the interfacial transition zone (ITZ), which led to reduced permeability. Tests on the durability properties verified the beneficial effects of nano-silica. The channels for harmful agents through the cement composites were partially filled and blocked. The pore size distribution also indicated that the large capillary pores were refined by the nano-silica, due to the combined contribution of the nano-filler effect and the pozzolanic reaction.
Resumo:
This paper investigated the influence of nano-silica (NS) on the mechanical and transport properties of lightweight concrete (LWC). The resistance of LWC to water and chloride ions penetration was enhanced despite strength marginally increased. Water penetration depth, moisture sorptivity, chloride migration and diffusion coefficient was reduced by 23% and 49%, 23% and 10%, 5% and 0%, 22% and 12% compared to the two reference LWC mixes (pure cement and 60% slag blended cement), respectively with 1% NS. Such improvements were attributed to more compact microstructures because the micropore system was refined and the interface between aggregates and paste was enhanced.
Resumo:
The durability of reinforced concrete structures depends, in the main, on the performance of the cover-zone concrete as it is this which protects the steel from the external environment. This paper focusses on the use of discretised electrical property measurements to study depth-related features during both the curing and post-curing period thereby allowing an integrated assessment of the protective properties of the cover region. In the current work, use is made of a small, multi-electrode array embedded within the surface 75mm of concrete specimens. Concretes were manufactured with different European cements (CEM) and water/binder ratios representing mixes which satisfied the minimum requirements for a range of environmental exposure classes including exposure to chlorides. Electrical resistance measurements were taken over a period in excess of 300 days which showed on-going hydration, pozzolanic reaction and pore-structure refinement; in addition, in the post-curing period, when exposed to a cyclic chloride ponding regime, measurements could be used to study the convective zone and ionic enrichment of the surface layer.
Resumo:
Implementation of both design for durability and performance-based standards and specifications are limited by the lack of rapid, simple, science-based test methods for characterizing the transport properties and deterioration resistance of concrete. To this end, this paper presents the background rationale and current developments in the application of electrical property measurements - conductivity in this instance - as a testing methodology to evaluate the relative performance of a range of concrete mixes. The technique can not only be used on standard specimens (e.g. cubes), but also lends itself to in-situ monitoring thereby allowing measurements to be obtained on the as-placed concrete. It is the latter which forms the focus of the current work. Conductivity measurements are presented for concretes with and without supplementary cementitious materials (SCM's) from demoulding up to 400-days. It is shown that electrical conductivity measurements display a continual decrease over the entire test period and attributed to the pore structure refinement due to hydration and pozzolanic reaction in those concretes containing blast furnace slag or fly ash. The term Formation Factor is introduced to rank concrete performance in terms of is resistance to chloride penetration.
Resumo:
Implementation of both design for durability and performance-based standards and specifications are limited by the lack of rapid, simple, science based test methods for characterising the transport properties and deterioration resistance of concrete. This paper presents developments in the application of electrical property measurements as a testing methodology to evaluate the relative performance of a range of concrete mixes. The technique lends itself to in-situ monitoring thereby allowing measurements to be obtained on the as-placed concrete. Conductivity measurements are presented for concretes with and without supplementary cementitious materials (SCM’s) from demoulding up to 350 days. It is shown that electrical conductivity measurements display a continual decrease over the entire test period and attributed to pore structure refinement due to hydration and pozzolanic reaction. The term formation factor is introduced to rank concrete performance in terms of is resistance to chloride penetration.
Resumo:
For proper management of wastes and their possible recycling as raw materials, complete characterization of the materials is necessary to evaluate the main scientific aspects and potential applications. The current paper presents a detailed scientific study of different Brazilian sugar cane bagasse ashes from the cogeneration industry as alternative cementing materials (active addition) for cement manufacture. The results show that the ashes from the industrial process (filter and bottom ones) present different chemical and mineralogical compositions and pozzolanic properties as well. As a consequence of its nature, the kinetic rate constant (K) states that the pozzolanic activity is null for the bottom ash and very low for the filter ash with respect to a sugar cane bagasse ash obtained in the laboratory under controlled burning conditions (reference). The scarce pozzolanic activity showed by ashes could be related to a possible contamination of bagasse wastes (with soils) before their use as alternative combustibles. For this reason, an optimization process for these wastes is advisable, if the ashes are to be used as pozzolans. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Potiguar basin has large fields of viscous oil where the used method for recovering is based on vapor injection; this operation is carried out by injecting vapor in the oilwell directly, without the protection of a revetment through thermal insulation, what causes its dilation and, consequently, cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in phases calcium-rich, caused by the high temperatures in the wells, subjected to thermal recuperation. This work has evaluated the application of composite pastes with addition of residue of biomass of ground sugar-cane bagasse as anti-retrogression mineral admixture for cementation of oil-wells subjected to thermal recuperation. The addition of the mineral residue was carried out considering a relative amount of 10, 20, 30, 40 and 59% in relation to cement mass, trying to improve the microstructure of the paste, still being developed a reference paste only with cement and a paste with addition of 40% of silica flour - renowned material in the oil industry as anti-retrogression additive. Pozzolanic activity of the ash was evaluated through XRD, TG/DTG, as the resistance to compression, and it was also determined the physical and mechanical behavior of the pastes when submitted to cure at low temperatures (22 and 38º C); besides it was evaluated the behavior of the pastes when submitted to two cycles of cure at high temperature (280ºC) and pressure (7 MPa). It was verified that the ash of the sugar-cane biomass presents pozzolanic reaction and has great efficiency in decrease the permeability of the paste by filler effect, as well as that addition of ash in a relative amount of 10, 20 e 30% increases cured compressive resistance at low temperatures. It was also showed that the ash in a relative amount of 40% and 59% has very significant efficiency as anti-retrogression additive, since it prevents the decrease of compressive resistance and forms hydrated calcium silicate type xenotlita and tobermorita which have more resistance and stability in high temperatures
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
The worldwide production of bamboo generates large volumes of leaf wastes, which are deposited in landfills or burned in an uncontrolled manner, with negative effects in the environment. The ash obtained by calcining of the bamboo leaf waste, shows good qualities as supplementary cementing material for the production of blended cements. The current paper shows a detailed scientific study of a Brazilian bamboo leaf ash (BLA) calcined at 600 degrees C in small scale condition, by using different techniques (XRF, XRD, SEM/EDX, FT-IR, TG/DTG) and technical study in order. to analyse the behaviour of this ash in blended cements elaborated with 10% and 20% by mass of BLA. The results stated that this ash shows a very high pozzolanic activity, with a reaction rate constant K of the order of 10(-1)/h and type I CSH gel was the main hydrated phase obtained from pozzolanic reaction. The BLA blended cements (10% and 20%) complied with the physical and mechanical requirements of the existing European standards. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The effect of 10% and 20% replacement metakaolin on a number of aspects of hydration chemistry and service performance of ordinary Portland cement pastes has been investigated. The analysis of expressed pore solutions has revealed that metakaolin-blended specimen pastes possess enhanced chloride binding capacities and reduced pore solution pH values when compared with their unblended counterparts. The implications of the observed changes in pore solution chemistry with respect to chloride induced reinforcement corrosion and the reduction in expansion associated with the alkali aggregate reaction are discussed. Differential thermal analysis, mercury intrusion porosimetry, and nuclear magnetic resonance spectroscopy have been employed in the analysis of the solid phase. It is suggested that hydrated gehlenite (a product of pozzolanic reaction) is operative in the removal and solid state binding of chloride ions from the pore solution of metakaolin-blended pastes. Diffusion coefficients obtained in a non-steady state chloride ion diffusion investigation have indicated that cement pastes containing 10% and 20% replacement metakaolin exhibit superior resistance to the penetration of chloride ions in comparison with those of plain OPC of the same water:cement ratio. The chloride induced corrosion behaviour of cement paste samples, of water:cement ratio 0.4, containing 0% , 10%, and 20% replacement metakaolin, has been monitored using the linear polarization technique. No significant corrosion of embedded mild steel was observed over a 200 day period.